974 resultados para Problem behavior


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relatório da Prática Profissional Supervisionada Mestrado em Educação Pré-Escolar

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under the pseudoinverse control, robots with kinematical redundancy exhibit an undesirable chaotic joint motion which leads to an erratic behavior. This paper studies the complexity of fractional dynamics of the chaotic response. Fourier and wavelet analysis provides a deeper insight, helpful to know better the lack of repeatability problem of redundant manipulators. This perspective for the study of the chaotic phenomena will permit the development of superior trajectory control algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Química Pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study exotic patterns appearing in a network of coupled Chen oscillators. Namely, we consider a network of two rings coupled through a “buffer” cell, with Z3×Z5 symmetry group. Numerical simulations of the network reveal steady states, rotating waves in one ring and quasiperiodic behavior in the other, and chaotic states in the two rings, to name a few. The different patterns seem to arise through a sequence of Hopf bifurcations, period-doubling, and halving-period bifurcations. The network architecture seems to explain certain observed features, such as equilibria and the rotating waves, whereas the properties of the chaotic oscillator may explain others, such as the quasiperiodic and chaotic states. We use XPPAUT and MATLAB to compute numerically the relevant states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The container loading problem (CLP) is a combinatorial optimization problem for the spatial arrangement of cargo inside containers so as to maximize the usage of space. The algorithms for this problem are of limited practical applicability if real-world constraints are not considered, one of the most important of which is deemed to be stability. This paper addresses static stability, as opposed to dynamic stability, looking at the stability of the cargo during container loading. This paper proposes two algorithms. The first is a static stability algorithm based on static mechanical equilibrium conditions that can be used as a stability evaluation function embedded in CLP algorithms (e.g. constructive heuristics, metaheuristics). The second proposed algorithm is a physical packing sequence algorithm that, given a container loading arrangement, generates the actual sequence by which each box is placed inside the container, considering static stability and loading operation efficiency constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a simple model for a biaxial nematic liquid crystal. This consists of hard spheroids that can switch shape between prolate (rodlike) and oblate (platelike) subject to an energy penalty Δε. The spheroids are approximated as hard Gaussian overlap particles and are treated at the level of Onsager's second-virial description. We use both bifurcation analysis and a numerical minimization of the free energy to show that, for additive particle shapes, (i) there is no stable biaxial phase even for Δε=0 (although there is a metastable biaxial phase in the same density range as the stable uniaxial phase) and (ii) the isotropic-to-nematic transition is into either one of two degenerate uniaxial phases, rod rich or plate rich. We confirm that even a small amount of shape nonadditivity may stabilize the biaxial nematic phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of T. cruzi strains from S. Felipe - BA (19 SF, 21 SF and 22 SF) classified as Type II Zymodeme 2, was investigated after passage through the authoctonous (P. megistus) and foreign vectors (T. infestans and R. prolixus). For each strain Swiss mice were infected: I - with blood forms (control); II - with metacyclic forms (MF) from P. megistus; III - with MF from T. infestans; IV - with MF from R. prolixus. Inocula: MF from the three species of triatomine, 60 to 120 days after feeding in infected mice, adjusted to 10 4. Biological behavior in mice (parasitemia, morphology, mortality, virulence and pathogenicity) after passage through triatomine was compared with data from the same strain in control mice. Isoenzymic electrophoresis (ASAT, ALAT, PGM, GPI) were also performed after culture into Warren medium. The three strains maintained the isoenzyme profiles (zymodeme 2), in the control groups and after passages through different species of triatomine. Biological characterization disclosed Type II strains patterns for all groups. An increased virulence was observed with the 22 SF strain isolated from P. megistus and T. infestans and higher levels of parasitemia and predominance of slender forms in mice inoculated with the 19 SF and 21 SF from these same species. Results indicate that the passage through the two species T. infestans and P. megistus had a positive influence on the virulence of the regional strains of S. Felipe, regardless of being autocthonous (P. megistus) or foreign to the area (T. infestans).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From 1950 to 1990 a total of 45,862 strains (31,517 isolates from human sources, and 14,345 of non-human origin) were identified at Instituto Adolfo Lutz. No prevalence of any serovars was seen during the period 1950-66 among human sources isolates. Important changing pattern was seen in 1968, when S. Typhimurim surprisingly increased becoming the prevalent serovar in the following decades. During the period of 1970-76, S. Typhimurium represented 77.7% of all serovars of human origin. Significant rise in S. Agona isolation as well as in the number of different serovars among human sources strains were seen in the late 70' and the 80's. More than one hundred different serovars were identified among non-human origin strains. Among serovars isolated from human sources, 74.9%, 15.5%, and 3.7% were recovered from stool, blood, and cerebrospinal fluid cultures, respectively. The outbreak of meningitis by S. Grumpensis in the 60's, emphasizes the concept that any Salmonella serovars can be a cause of epidemics, mainly of the nosocomial origin. This evaluation covering a long period shows the important role of the Public Health Laboratory in the surveillance of salmonellosis, one of the most frequent zoonosis in the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The minimum interval graph completion problem consists of, given a graph G = ( V, E ), finding a supergraph H = ( V, E ∪ F ) that is an interval graph, while adding the least number of edges |F| . We present an integer programming formulation for solving the minimum interval graph completion problem recurring to a characteri- zation of interval graphs that produces a linear ordering of the maximal cliques of the solution graph.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we address an order processing optimization problem known as minimization of open stacks (MOSP). We present an integer pro gramming model, based on the existence of a perfect elimination scheme in interval graphs, which finds an optimal sequence for the costumers orders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Doutor em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado em Gestão Integrada da Qualidade Ambiente e Segurança

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A definição de teores mínimos de incorporação de biocombustíveis, constitui objeto de discussão entre grupos pro-desenvolvimento e ambientalistas. Esses últimos argumentam que as consequências da utilização desta fonte energética ainda são desconhecidas. Além disso, alegam que a produção de biocombustíveis é, em parte, responsável pelo aumento no preço dos alimentos, encoraja a conversão de florestas em monoculturas e conduz à exploração de trabalhadores em países em desenvolvimento (PEDs). Para responder à dependência energética dos combustíveis de origem fóssil, e ajudar a reduzir as emissões de gases com efeito de estufa, sobretudo no sector dos transportes, o biodiesel produzido a partir de óleos alimentares usados têm sido apontado como uma “solução verde” capaz de minimizar o problema das alterações climáticas e valorizar um resíduo, e simultaneamente conferir ao setor energético um pouco mais de independência. De forma a desmistificar e clarificar um pouco estas premissas, a presente dissertação pretende fazer um estudo de avaliação do impacto da utilização do biodiesel, nomeadamente no que diz respeito às emissões gasosas. Posteriormente realizou-se, tomando como referência uma pequena frota industrial existente, uma análise comparativa dos consumos e emissões dos principais poluentes decorrentes da utilização do biodiesel em diferentes percentagens de incorporação no gasóleo, comparativamente ao gasóleo puro. O trabalho culmina com uma abordagem técnica sobre o comportamento de um veículo equipado com um motor de ignição por compressão, utilizando como biocombustível o biodiesel.