875 resultados para Probability of choice
Resumo:
Eu3+ ion was adopted as a probe to detect the probability of entrance of alkali elements into the crystal lattice of MgO, CaO and La2O3 by means of its characteristic emission. Based on the experimental data it is concluded that Li+ and Na+ ions can substitute Mg2+ and Ca2+ ions and only a small amount of K+ ion can enter into the lattice of CaO. Whilst Li+ ion can not enter into the lattice of lanthana. The conclusion of this investigation is in good agreement with that obtained by Lunsford by ESR studies.
Resumo:
The sequence distribution of the monomeric units in the styrene-acrylic acid copolymer has been obtained by calculation. The probability of long sequences of styrene increases with an increase in the content of the monomer in the copolymer. The highest distribution of short sequences of styrene takes place for the copolymer containing equimolecular amounts of styrene and acrylic acid. The copolymer which has this latter structure is inadequate for the synthesis of highly active supported complexes. When the distributions of long and short sequences of styrene are approximately equal, the activity of the Nd and Fe prepared polymer complexes is higher.
Resumo:
A large-DNA-fragment library is necessary for research into the Porphyra genome. In this study, a bacterial artificial chromosome (BAC) library of Porphyra yezoensis was constructed and characterized. The library contains 54,144 BAC clones with an average insert size of about 65 kb and fewer than 0.7% of clones without large inserts. Therefore, its capacity is more than 6.6 P. yezoensis genome equivalents, and the probability of recovering any nuclear DNA sequence from the library is higher than 99%. The library shows good fidelity and stability. A putative trehalose-6-phosphate synthase (TPS) gene was successfully screened out from the library. The above results show that the library is useful for gene cloning and genomic research in P. yezoensis.
Resumo:
Large-insert bacterial artificial chromosome (BAC) libraries are necessary for advanced genetics and genomics research. To facilitate gene cloning and characterization, genome analysis, and physical mapping of scallop, two BAC libraries were constructed from nuclear DNA of Zhikong scallop, Chlamys farreri Jones et Preston. The libraries were constructed in the BamHI and MboI sites of the vector pECBAC1, respectively. The BamHI library consists of 73,728 clones, and approximately 99% of the clones contain scallop nuclear DNA inserts with an average size of 110 kb, covering 8.0x haploid genome equivalents. Similarly, the MboI library consists of 7680 clones, with an average insert of 145 kb and no insert-empty clones, thus providing a genome coverage of 1.1x. The combined libraries collectively contain a total of 81,408 BAC clones arrayed in 212 384-well microtiter plates, representing 9.1x haploid genome equivalents and having a probability of greater than 99% of discovering at least one positive clone with a single-copy sequence. High-density clone filters prepared from a subset of the two libraries were screened with nine pairs of Overgos designed from the cDNA or DNA sequences of six genes involved in the innate immune system of mollusks. Positive clones were identified for every gene, with an average of 5.3 BAC clones per gene probe. These results suggest that the two scallop BAC libraries provide useful tools for gene cloning, genome physical mapping, and large-scale sequencing in the species.
Resumo:
Concentrations and ratios of nutrients in Jiaozhou Bay, China, have changed much in the past decades, with trends indicating an increase in nitrogen and a decrease in silicate. Statistical analysis has shown that the long-term variations of nutrients are associated with agricultural activities, precipitation, and anthropogenic factors. Stoichiometric calculations indicate that the nutrient structure has become more and more unbalanced. There has been almost no possibility for nitrogen limitation since the 1980s, the probability of P limitation has increased, and the probability of Si limitation has also increased markedly from the 1980s to the 1990s. As a consequence of changes in nutrient structure, a decrease in the abundance of net phytoplankton was evident, whereas total chlorophyll a levels have remained roughly unchanged at around 3.55 mu g/L. Thus, it is likely that smaller species have taken the niche vacated by the larger species. Changes in phytoplankton size and species composition may ultimately lead to various functional and structural changes at the system level.
Resumo:
In this paper, we viewed the diel vertical migration (DVM) of copepod in the context of the animal's immediate behaviors of everyday concerns and constructed an instantaneous behavioral criterion effective for DVM and non-DVM behaviors. This criterion employed the function of 'venturous revenue' (VR), which is the product of the food intake and probability of the survival, to evaluate the gains and losses of the behaviors that the copepod could trade-off. The optimal behaviors are to find the optimal habitats to maximize VR. Two types of VRs are formulated and tested by the theoretical analysis and simulations. The sensed VR, monitoring the real-time changes of trade-offs and thereby determining the optimum habitat, is validated to be the effective objective function for the optimization of the behavior; whereas, the realized VR, quantifying the actual profit obtained by an optimal copepod in the sensed-VR-determined habitat, defines the life history of a specific age cohort. The achievement of a robust copepod overwintering stock through integrating the dynamics of the constituent age cohorts subjected to the instantaneous behavioral criterion for DVM clearly exemplified a possible way bridging the immediate pursuit of an individual and the end success of the population. (c) 2005 Published by Elsevier Ltd.
Resumo:
针对RFID读写器识别多标签过程中出现的冲突问题,研究并实现了EPC Class-1 Gen-2标准中的防冲突算法,即时隙随机算法(SR算法),同时针对SR算法的不足提出改进算法。改进算法采用不避让冲突时隙的处理方式,降低了由时隙的随机选取所导致的标签间冲突的概率。实验结果证明,改进后的算法在通信次数和吞吐率方面均优于原算法,有效提高标签识别效率。
Resumo:
The blocking probability of a network is a common measure of its performance. There exist means of quickly calculating the blocking probabilities of Banyan networks; however, because Banyan networks have no redundant paths, they are not inherently fault-tolerant, and so their use in large-scale multiprocessors is problematic. Unfortunately, the addition of multiple paths between message sources and sinks in a network complicates the calculation of blocking probabilities. A methodology for exact calculation of blocking probabilities for small networks with redundant paths is presented here, with some discussion of its potential use in approximating blocking probabilities for large networks with redundant paths.
Resumo:
We present methods of calculating the value of two performance parameters for multipath, multistage interconnection networks: the normalized throughput and the probability of successful message transmission. We develop a set of exact equations for the loading probability mass functions of network channels and a program for solving them exactly. We also develop a Monte Carlo method for approxmiate solution of the equations, and show that the resulting approximation method will always calculate the values of the performance parameters more quickly than direct simulation.
Resumo:
An investigation in innovation management and entrepreneurial management is conducted in this thesis. The aim of the research is to explore changes of innovation styles in the transformation process from a start-up company to a more mature phase of business, to predict in a second step future sustainability and the probability of success. As businesses grow in revenue, corporate size and functional complexity, various triggers, supporters and drivers affect innovation and company's success. In a comprehensive study more than 200 innovative and technology driven companies have been examined and compared to identify patterns in different performance levels. All of them have been founded under the same formal requirements of the Munich Business Plan Competition -a research approach which allowed a unique snapshot that only long-term studies would be able to provide. The general objective was to identify the correlation between different factors, as well as different dimensions, to incremental and radical innovations realised. The 12 hypothesis were formed to prove have been derived from a comprehensive literature review. The relevant academic and practitioner literature on entrepreneurial, innovation, and knowledge management as well as social network theory revealed that the concept of innovation has evolved significantly over the last decade. A review of over 15 innovation models/frameworks contributed to understand what innovation in context means and what the dimensions are. It appears that the complex theories of innovation can be described by the increasing extent of social ingredients in the explanation of innovativeness. Originally based on tangible forms of capital, and on the necessity of pull and technology push, innovation management is today integrated in a larger system. Therefore, two research instruments have been developed to explore the changes in innovations styles. The Innovation Management Audits (IMA Start-up and IMA Mature) provided statements related to product/service development, innovativeness in various typologies, resources for innovations, innovation capabilities in conjunction to knowledge and management, social networks as well as the measurement of outcomes to generate high-quality data for further exploration. In obtaining results the mature companies have been clustered in the performance level low, average and high, while the start-up companies have been kept as one cluster. Firstly, the analysis exposed that knowledge, the process of acquiring knowledge, interorganisational networks and resources for innovations are the most important driving factors for innovation and success. Secondly, the actual change of the innovation style provides new insights about the importance of focusing on sustaining success and innovation ii 16 key areas. Thirdly, a detailed overview of triggers, supporters and drivers for innovation and success for each dimension support decision makers in putting their company in the right direction. Fourthly, a critical review of contemporary strategic management in conjunction to the findings provides recommendation of how to apply well-known management tools. Last but not least, the Munich cluster is analysed providing an estimation of the success probability of the different performance cluster and start-up companies. For the analysis of the probability of success of the newly developed as well as statistically and qualitative validated ICP Model (Innovativeness, Capabilities & Potential) has been developed and applied. While the model was primarily developed to evaluate the probability of success of companies; it has equal application in the situation to measure innovativeness to identify the impact of various strategic initiatives within small or large enterprises. The main findings of the model are that competitor, and customer orientation and acquiring knowledge important for incremental and radical innovation. Formal and interorganisation networks are important to foster innovation but informal networks appear to be detrimental to innovation. The testing of the ICP model h the long term is recommended as one subject of further research. Another is to investigate some of the more intangible aspects of innovation management such as attitude and motivation of mangers. IV
Resumo:
Instytut Filologii Angielskiej
Resumo:
(This Technical Report revises TR-BUCS-2003-011) The Transmission Control Protocol (TCP) has been the protocol of choice for many Internet applications requiring reliable connections. The design of TCP has been challenged by the extension of connections over wireless links. In this paper, we investigate a Bayesian approach to infer at the source host the reason of a packet loss, whether congestion or wireless transmission error. Our approach is "mostly" end-to-end since it requires only one long-term average quantity (namely, long-term average packet loss probability over the wireless segment) that may be best obtained with help from the network (e.g. wireless access agent).Specifically, we use Maximum Likelihood Ratio tests to evaluate TCP as a classifier of the type of packet loss. We study the effectiveness of short-term classification of packet errors (congestion vs. wireless), given stationary prior error probabilities and distributions of packet delays conditioned on the type of packet loss (measured over a larger time scale). Using our Bayesian-based approach and extensive simulations, we demonstrate that congestion-induced losses and losses due to wireless transmission errors produce sufficiently different statistics upon which an efficient online error classifier can be built. We introduce a simple queueing model to underline the conditional delay distributions arising from different kinds of packet losses over a heterogeneous wired/wireless path. We show how Hidden Markov Models (HMMs) can be used by a TCP connection to infer efficiently conditional delay distributions. We demonstrate how estimation accuracy is influenced by different proportions of congestion versus wireless losses and penalties on incorrect classification.
Resumo:
Thin film dielectrics based on titanium, zirconium or hafnium oxides are being introduced to increase the permittivity of insulating layers in transistors for micro/nanoelectronics and memory devices. Atomic layer deposition (ALD) is the process of choice for fabricating these films, as it allows for high control of composition and thickness in thin, conformal films which can be deposited on substrates with high aspect-ratio features. The success of this method depends crucially on the chemical properties of the precursor molecules. A successful ALD precursor should be volatile, stable in the gas-phase, but reactive on the substrate and growing surface, leading to inert by-products. In recent years, many different ALD precursors for metal oxides have been developed, but many of them suffer from low thermal stability. Much promise is shown by group 4 metal precursors that contain cyclopentadienyl (Cp = C5H5-xRx) ligands. One of the main advantages of Cp precursors is their thermal stability. In this work ab initio calculations were carried out at the level of density functional theory (DFT) on a range of heteroleptic metallocenes [M(Cp)4-n(L)n], M = Hf/Zr/Ti, L = Me and OMe, in order to find mechanistic reasons for their observed behaviour during ALD. Based on optimized monomer structures, reactivity is analyzed with respect to ligand elimination. The order in which different ligands are eliminated during ALD follows their energetics which was in agreement with experimental measurements. Titanocene-derived precursors, TiCp*(OMe)3, do not yield TiO2 films in atomic layer deposition (ALD) with water, while Ti(OMe)4 does. DFT was used to model the ALD reaction sequence and find the reason for the difference in growth behaviour. Both precursors adsorb initially via hydrogen-bonding. The simulations reveal that the Cp* ligand of TiCp*(OMe)3 lowers the Lewis acidity of the Ti centre and prevents its coordination to surface O (densification) during both of the ALD pulses. Blocking this step hindered further ALD reactions and for that reason no ALD growth is observed from TiCp*(OMe)3 and water. The thermal stability in the gas phase of Ti, Zr and Hf precursors that contain cyclopentadienyl ligands was also considered. The reaction that was found using DFT is an intramolecular α-H transfer that produces an alkylidene complex. The analysis shows that thermal stabilities of complexes of the type MCp2(CH3)2 increase down group 4 (M = Ti, Zr and Hf) due to an increase in the HOMO-LUMO band gap of the reactants, which itself increases with the electrophilicity of the metal. The reverse reaction of α-hydrogen abstraction in ZrCp2Me2 is 1,2-addition reaction of a C-H bond to a Zr=C bond. The same mechanism is investigated to determine if it operates for 1,2 addition of the tBu C-H across Hf=N in a corresponding Hf dimer complex. The aim of this work is to understand orbital interactions, how bonds break and how new bonds form, and in what state hydrogen is transferred during the reaction. Calculations reveal two synchronous and concerted electron transfers within a four-membered cyclic transition state in the plane between the cyclopentadienyl rings, one π(M=X)-to-σ(M-C) involving metal d orbitals and the other σ(C-H)-to-σ(X-H) mediating the transfer of neutral H, where X = C or N. The reaction of the hafnium dimer complex with CO that was studied for the purpose of understanding C-H bond activation has another interesting application, namely the cleavage of an N-N bond and resulting N-C bond formation. Analysis of the orbital plots reveals repulsion between the occupied orbitals on CO and the N-N unit where CO approaches along the N-N axis. The repulsions along the N-N axis are minimized by instead forming an asymmetrical intermediate in which CO first coordinates to one Hf and then to N. This breaks the symmetry of the N-N unit and the resultant mixing of MOs allows σ(NN) to be polarized, localizing electrons on the more distant N. This allowed σ(CO) and π(CO) donation to N and back-donation of π*(Hf2N2) to CO. Improved understanding of the chemistry of metal complexes can be gained from atomic-scale modelling and this provides valuable information for the design of new ALD precursors. The information gained from the model decomposition pathway can be additionally used to understand the chemistry of molecules in the ALD process as well as in catalytic systems.
Resumo:
Ribosome profiling (ribo-seq) is a recently developed technique that provides genomewide information on protein synthesis (GWIPS) in vivo. The high resolution of ribo-seq is one of the exciting properties of this technique. In Chapter 2, I present a computational method that utilises the sub-codon precision and triplet periodicity of ribosome profiling data to detect transitions in the translated reading frame. Application of this method to ribosome profiling data generated for human HeLa cells allowed us to detect several human genes where the same genomic segment is translated in more than one reading frame. Since the initial publication of the ribosome profiling technique in 2009, there has been a proliferation of studies that have used the technique to explore various questions with respect to translation. A review of the many uses and adaptations of the technique is provided in Chapter 1. Indeed, owing to the increasing popularity of the technique and the growing number of published ribosome profiling datasets, we have developed GWIPS-viz (http://gwips.ucc.ie), a ribo-seq dedicated genome browser. Details on the development of the browser and its usage are provided in Chapter 3. One of the surprising findings of ribosome profiling of initiating ribosomes carried out in 3 independent studies, was the widespread use of non-AUG codons as translation initiation start sites in mammals. Although initiation at non-AUG codons in mammals has been documented for some time, the extent of non-AUG initiation reported by these ribo-seq studies was unexpected. In Chapter 4, I present an approach for estimating the strength of initiating codons based on the leaky scanning model of translation initiation. Application of this approach to ribo-seq data illustrates that initiation at non-AUG codons is inefficient compared to initiation at AUG codons. In addition, our approach provides a probability of initiation score for each start site that allows its strength of initiation to be evaluated.
Resumo:
Amorphous silicon has become the material of choice for many technologies, with major applications in large area electronics: displays, image sensing and thin film photovoltaic cells. This technology development has occurred because amorphous silicon is a thin film semiconductor that can be deposited on large, low cost substrates using low temperature. In this thesis, classical molecular dynamics and first principles DFT calculations have been performed to generate structural models of amorphous and hydrogenated amorphous silicon and interfaces of amorphous and crystalline silicon, with the ultimate aim of understanding the photovoltaic properties of core-shell crystalline amorphous Si nanowire structures. We have shown, unexpectedly, from the simulations, that our understanding of hydrogenated bulk a-Si needs to be revisited, with our robust finding that when fully saturated with hydrogen, bulk a-Si exhibits a constant optical energy gap, irrespective of the hydrogen concentration in the sample. Unsaturated a-Si:H, with a lower than optimum hydrogen content, shows a smaller optical gap, that increases with hydrogen content until saturation is reached. The mobility gaps obtained from an analysis of the electronic states show similar behavior. We also obtained that the optical and mobility gaps show a volcano curve as the H content is varied from 7% (undersaturation) to 18% (mild oversaturation). In the case of mild over saturation, the mid-gap states arise exclusively from an increase in the density of strained Si-Si bonds. Analysis of our structures shows the extra H atoms in this case form a bridge between neighboring silicon atoms which increases the corresponding Si-Si distance and promotes bond length disorder in the sample. That has the potential to enhance the Staebler-Wronski effect. Planar interface models of amorphous-crystalline silicon have been generated in Si (100), (110) and (111) surfaces. The interface models are characterized by structure, RDF, electronic density of states and optical absorption spectrum. We find that the least stable (100) surface will result in the formation of the thickest amorphous silicon layer, while the most stable (110) surface forms the smallest amorphous region. We calculated for the first time band offsets of a-Si:H/c-Si heterojunctions from first principles and examined the influence of different surface orientations and amorphous layer thickness on the offsets and implications for device performance. The band offsets depend on the amorphous layer thickness and increase with thickness. By controlling the amorphous layer thickness we can potentially optimise the solar cell parameters. Finally, we have successfully generated different amorphous layer thickness of the a-Si/c-Si and a-Si:H/c-Si 5 nm nanowires from heat and quench. We perform structural analysis of the a-Si-/c-Si nanowires. The RDF, Si-Si bond length distributions, and the coordination number distributions of amorphous regions of the nanowires reproduce similar behaviour compared to bulk amorphous silicon. In the final part of this thesis we examine different surface terminating chemical groups, -H, - OH and –NH2 in (001) GeNW. Our work shows that the diameter of Ge nanowires and the nature of surface terminating groups both play a significant role in both the magnitude and the nature of the nanowire band gaps, allowing tuning of the band gap by up to 1.1 eV. We also show for the first time how the nanowire diameter and surface termination shifts the absorption edge in the Ge nanowires to longer wavelengths. Thus, the combination of nanowire diameter and surface chemistry can be effectively utilised to tune the band gaps and thus light absorption properties of small diameter Ge nanowires.