983 resultados para Princeton Ocean Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dependence of the annual mean tropical precipitation on horizontal resolution is investigated in the atmospheric version of the Hadley Centre General Environment Model (HadGEM1). Reducing the grid spacing from about 350 km to 110 km improves the precipitation distribution in most of the tropics. In particular, characteristic dry biases over South and Southeast Asia including the Maritime Continent as well as wet biases over the western tropical oceans are reduced. The annual-mean precipitation bias is reduced by about one third over the Maritime Continent and the neighbouring ocean basins associated with it via the Walker circulation. Sensitivity experiments show that much of the improvement with resolution in the Maritime Continent region is due to the specification of better resolved surface boundary conditions (land fraction, soil and vegetation parameters) at the higher resolution. It is shown that in particular the formulation of the coastal tiling scheme may cause resolution sensitivity of the mean simulated climate. The improvement in the tropical mean precipitation in this region is not primarily associated with the better representation of orography at the higher resolution, nor with changes in the eddy transport of moisture. Sizeable sensitivity to changes in the surface fields may be one of the reasons for the large variation of the mean tropical precipitation distribution seen across climate models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A one-dimensional, thermodynamic, and radiative model of a melt pond on sea ice is presented that explicitly treats the melt pond as an extra phase. A two-stream radiation model, which allows albedo to be determined from bulk optical properties, and a parameterization of the summertime evolution of optical properties, is used. Heat transport within the sea ice is described using an equation describing heat transport in a mushy layer of a binary alloy (salt water). The model is tested by comparison of numerical simulations with SHEBA data and previous modeling. The presence of melt ponds on the sea ice surface is demonstrated to have a significant effect on the heat and mass balance. Sensitivity tests indicate that the maximum melt pond depth is highly sensitive to optical parameters and drainage. INDEX TERMS: 4207 Oceanography: General: Arctic and Antarctic oceanography; 4255 Oceanography: General: Numerical modeling; 4299 Oceanography: General: General or miscellaneous; KEYWORDS: sea ice, melt pond, albedo, Arctic Ocean, radiation model, thermodynamic

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heat and mass balance of the Arctic Ocean is very sensitive to the growth and decay of sea ice and the interaction between the heat and salt fields in the oceanic boundary layer. The hydraulic roughness of sea ice controls the detailed nature of turbulent fluxes in the boundary layer and hence is an important ingredient in model parameterizations. We describe a novel mechanism for the generation of corrugations of the sea ice–ocean interface, present a mathematical analysis elucidating the mechanism, and present numerical calculations for geophysically relevant conditions. The mechanism relies on brine flows developing in the sea ice due to Bernoulli suction by flow of ocean past the interface. For oceanic shears at the ice interface of 0.2 s−1, we expect the corrugations to form with a wavelength dependent upon the permeability structure of the sea ice which is described herein. The mechanism should be particularly important during sea ice formation in wind-maintained coastal polynyas and in leads. This paper applies our earlier analyses of the fundamental instability to field conditions and extends it to take account of the anisotropic and heterogeneous permeability of sea ice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Past climates provide a test of models’ ability to predict climate change. We present a comprehensive evaluation of state-of-the-art models against Last Glacial Maximum and mid-Holocene climates, using reconstructions of land and ocean climates and simulations from the Palaeoclimate Modelling and Coupled Modelling Intercomparison Projects. Newer models do not perform better than earlier versions despite higher resolution and complexity. Differences in climate sensitivity only weakly account for differences in model performance. In the glacial, models consistently underestimate land cooling (especially in winter) and overestimate ocean surface cooling (especially in the tropics). In the mid-Holocene, models generally underestimate the precipitation increase in the northern monsoon regions, and overestimate summer warming in central Eurasia. Models generally capture large-scale gradients of climate change but have more limited ability to reproduce spatial patterns. Despite these common biases, some models perform better than others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the initialization of Northern-hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates significantly reduces assimilation error both in identical-twin experiments and when assimilating sea-ice observations, reducing the concentration error by a factor of four to six, and the thickness error by a factor of two. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that the strong dependence of thermodynamic ice growth on ice concentration necessitates an adjustment of mean ice thickness in the analysis update. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that proportional mean-thickness updates are superior to the other two methods considered and enable us to assimilate sea ice in a global climate model using simple Newtonian relaxation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the initialisation of Northern Hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates leads to good assimilation performance for sea-ice concentration and thickness, both in identical-twin experiments and when assimilating sea-ice observations. The simulation of other Arctic surface fields in the coupled model is, however, not significantly improved by the assimilation. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that an adjustment of mean ice thickness in the analysis update is essential to arrive at plausible state estimates. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that assimilation with proportional mean-thickness updates outperforms the other two methods considered. The method described here is very simple to implement, and gives results that are sufficiently good to be used for initialising sea ice in a global climate model for seasonal to decadal predictions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have used the BIOME4 biogeography–biochemistry model and comparison with palaeovegetation data to evaluate the response of six ocean–atmosphere general circulation models to mid-Holocene changes in orbital forcing in the mid- to high-latitudes of the northern hemisphere. All the models produce: (a) a northward shift of the northern limit of boreal forest, in response to simulated summer warming in high-latitudes. The northward shift is markedly asymmetric, with larger shifts in Eurasia than in North America; (b) an expansion of xerophytic vegetation in mid-continental North America and Eurasia, in response to increased temperatures during the growing season; (c) a northward expansion of temperate forests in eastern North America, in response to simulated winter warming. The northward shift of the northern limit of boreal forest and the northward expansion of temperate forests in North America are supported by palaeovegetation data. The expansion of xerophytic vegetation in mid-continental North America is consistent with palaeodata, although the extent may be over-estimated. The simulated expansion of xerophytic vegetation in Eurasia is not supported by the data. Analysis of an asynchronous coupling of one model to an equilibrium-vegetation model suggests vegetation feedback exacerbates this mid-continental drying and produces conditions more unlike the observations. Not all features of the simulations are robust: some models produce winter warming over Europe while others produce winter cooling. As a result, some models show a northward shift of temperate forests (consistent with, though less marked than, the expansion shown by data) and others produce a reduction in temperate forests. Elucidation of the cause of such differences is a focus of the current phase of the Palaeoclimate Modelling Intercomparison Project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of orbital forcing and ocean impact on the Asian summer monsoon in the Holocene is investigated by comparing simulations with a fully coupled ocean–atmosphere general circulation model (FOAM) and with the atmospheric component of this model (FSSTAM) forced with prescribed modern sea-surface temperatures (SSTs). The results show: (1) the ocean amplifies the orbitally-induced increase in African monsoon precipitation, makes somewhat increase in southern India and damps the increase over the southeastern China. (2) The ocean could change the spatial distribution and local intensity of the orbitally-induced latitudinal atmospheric oscillation over the southeastern China and the subtropical western Pacific Ocean. (3) The orbital forcing mostly enhances the Asian summer precipitation in the FOAM and FSSTAM simulations. However, the ocean reduces the orbitally-induced summer precipitation and postpones the time of summer monsoon onset over the Asian monsoon region. (4) The orbital forcing considerably enhances the intensity of upper divergence, which is amplified by ocean further, over the eastern hemisphere. But the divergence is weaker in the FOAM simulations than in the FSSTAM simulations when the orbital forcing is fixed. (5) The orbital forcing can enhance the amplitude of precipitation variability over the subtropical Africa, the southeastern China and northwestern China, inversely, reduce it over central India and North China in the FOAM and FSSTAM simulations. The ocean obviously reduces the amplitude of precipitation variability over most of the Asian monsoon regions in the fixed orbital forcing simulations. (6) The areas characterized by increased summer precipitation in the long-term mean are mostly characterized by increased amplitude of short-term variability, whereas regions characterized by decreased precipitation are primarily characterized by decreased amplitude of short-term variability. However, the influences of orbital forcing or dynamical ocean on regional climate depend on the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results from nine coupled ocean-atmosphere simulations have been used to investigate changes in the relationship between the variability of monsoon precipitation over western Africa and tropical sea surface temperatures (SSTs) between the mid-Holocene and the present day. Although the influence of tropical SSTs on the African monsoon is generally overestimated in the control simulations, the models reproduce aspects of the observed modes of variability. Thus, most models reproduce the observed negative correlation between western Sahelian precipitation and SST anomalies in the eastern tropical Pacific, and many of them capture the positive correlation between SST anomalies in the eastern tropical Atlantic and precipitation over the Guinea coastal region. Although the response of individual model to the change in orbital forcing between 6 ka and present differs somewhat, eight of the models show that the strength of the teleconnection between SSTs in the eastern tropical Pacific and Sahelian precipitation is weaker in the mid-Holocene. Some of the models imply that this weakening was associated with a shift towards longer time periods (from 3–5 years in the control simulations toward 4–10 years in the mid-Holocene simulations). The simulated reduction in the teleconnection between eastern tropical Pacific SSTs and Sahelian precipitation appears to be primarily related to a reduction in the atmospheric circulation bridge between the Pacific and West Africa but, depending on the model, other mechanisms such as increased importance of other modes of tropical ocean variability or increased local recycling of monsoonal precipitation can also play a role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulations with the IPSL atmosphere–ocean model asynchronously coupled with the BIOME1 vegetation model show the impact of ocean and vegetation feedbacks, and their synergy, on mid- and high-latitude (>40°N) climate in response to orbitally-induced changes in mid-Holocene insolation. The atmospheric response to orbital forcing produces a +1.2 °C warming over the continents in summer and a cooling during the rest of the year. Ocean feedback reinforces the cooling in spring but counteracts the autumn and winter cooling. Vegetation feedback produces warming in all seasons, with largest changes (+1 °C) in spring. Synergy between ocean and vegetation feedbacks leads to further warming, which can be as large as the independent impact of these feedbacks. The combination of these effects causes the high northern latitudes to be warmer throughout the year in the ocean–atmosphere-vegetation simulation. Simulated vegetation changes resulting from this year-round warming are consistent with observed mid-Holocene vegetation patterns. Feedbacks also impact on precipitation. The atmospheric response to orbital-forcing reduces precipitation throughout the year; the most marked changes occur in the mid-latitudes in summer. Ocean feedback reduces aridity during autumn, winter and spring, but does not affect summer precipitation. Vegetation feedback increases spring precipitation but amplifies summer drying. Synergy between the feedbacks increases precipitation in autumn, winter and spring, and reduces precipitation in summer. The combined changes amplify the seasonal contrast in precipitation in the ocean–atmosphere-vegetation simulation. Enhanced summer drought produces an unrealistically large expansion of temperate grasslands, particularly in mid-latitude Eurasia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that summer precipitation biases in the South Asian monsoon domain are sensitive to increasing the convective parametrisation’s entrainment and detrainment rates in the Met Office Unified Model. We explore this sensitivity to improve our understanding of the biases and inform efforts to improve convective parametrisation. We perform novel targeted experiments in which we increase the entrainment and detrainment rates in regions of especially large precipitation bias. We use these experiments to determine whether the sensitivity at a given location is a consequence of the local change to convection or is a remote response to the change elsewhere. We find that a local change leads to different mean-state responses in comparable regions. When the entrainment and detrainment rates are increased globally, feedbacks between regions usually strengthen the local responses. We choose two regions of tropical ascent that show different mean-state responses, the western equatorial Indian Ocean and western north Pacific, and analyse them as case studies to determine the mechanisms leading to the different responses. Our results indicate that several aspects of a region’s mean-state, including moisture content, sea surface temperature and circulation, play a role in local feedbacks that determine the response to increased entrainment and detrainment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the 1960s North Atlantic sea surface temperatures (SST) cooled rapidly. The magnitude of the cooling was largest in the North Atlantic subpolar gyre (SPG), and was coincident with a rapid freshening of the SPG. Here we analyze hindcasts of the 1960s North Atlantic cooling made with the UK Met Office’s decadal prediction system (DePreSys), which is initialised using observations. It is shown that DePreSys captures—with a lead time of several years—the observed cooling and freshening of the North Atlantic SPG. DePreSys also captures changes in SST over the wider North Atlantic and surface climate impacts over the wider region, such as changes in atmospheric circulation in winter and sea ice extent. We show that initialisation of an anomalously weak Atlantic Meridional Overturning Circulation (AMOC), and hence weak northward heat transport, is crucial for DePreSys to predict the magnitude of the observed cooling. Such an anomalously weak AMOC is not captured when ocean observations are not assimilated (i.e. it is not a forced response in this model). The freshening of the SPG is also dominated by ocean salt transport changes in DePreSys; in particular, the simulation of advective freshwater anomalies analogous to the Great Salinity Anomaly were key. Therefore, DePreSys suggests that ocean dynamics played an important role in the cooling of the North Atlantic in the 1960s, and that this event was predictable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mineral dust aerosols in the atmosphere have the potential to affect the global climate by influencing the radiative balance of the atmosphere and the supply of micronutrients to the ocean. Ice and marine sediment cores indicate that dust deposition from the atmosphere was at some locations 2–20 times greater during glacial periods, raising the possibility that mineral aerosols might have contributed to climate change on glacial-interglacial time scales. To address this question, we have used linked terrestrial biosphere, dust source, and atmospheric transport models to simulate the dust cycle in the atmosphere for current and last glacial maximum (LGM) climates. We obtain a 2.5-fold higher dust loading in the entire atmosphere and a twenty-fold higher loading in high latitudes, in LGM relative to present. Comparisons to a compilation of atmospheric dust deposition flux estimates for LGM and present in marine sediment and ice cores show that the simulated flux ratios are broadly in agreement with observations; differences suggest where further improvements in the simple dust model could be made. The simulated increase in high-latitude dustiness depends on the expansion of unvegetated areas, especially in the high latitudes and in central Asia, caused by a combination of increased aridity and low atmospheric [CO2]. The existence of these dust source areas at the LGM is supported by pollen data and loess distribution in the northern continents. These results point to a role for vegetation feedbacks, including climate effects and physiological effects of low [CO2], in modulating the atmospheric distribution of dust.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predictability of the western North Pacific (WNP) summer climate associated with different El Niño–Southern Oscillation (ENSO) phases is investigated in this study based on the 1-month lead retrospective forecasts of five state-of-the-art coupled models from ENSEMBLES. During the period from 1960 to 2005, the models well capture the WNP summer climate anomalies during most of years in different ENSO phases except the La Niña decaying summers. In the El Niño developing, El Niño decaying and La Niña developing summers, the prediction skills are high for the WNP summer monsoon index (WNPMI), with the prediction correlation larger than 0.7. The high prediction skills of the lower-tropospheric circulation during these phases are found mainly over the tropical western Pacific Ocean, South China Sea and subtropical WNP. These good predictions correspond well to their close teleconnection with ENSO and the high prediction skills of tropical SSTs. By contrast, for the La Niña decaying summers, the prediction skills are considerably low with the prediction correlation for the WNPMI near to zero and low prediction skills around the Philippines and subtropical WNP. These poor predictions relate to the weak summer anomalies of the WNPMI during the La Niña decaying years and no significant connections between the WNP lower-tropospheric circulation anomalies and the SSTs over the tropical central and eastern Pacific Ocean in observations. However, the models tend to predict an apparent anomalous cyclone over the WNP during the La Niña decaying years, indicating a linearity of the circulation response over WNP in the models prediction in comparison with that during the El Niño decaying years which differs from observations. In addition, the models show considerable capability in describing the WNP summer anomalies during the ENSO neutral summers. These anomalies are related to the positive feedback between the WNP lower-tropospheric circulation and the local SSTs. The models can capture this positive feedback but with some uncertainties from different ensemble members during the ENSO neutral summers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated mechanisms for the Atlantic Meridional Overturning Circulation (AMOC) variability at 26.5° N (other than the Ekman component) that can be related to external forcings, in particular wind variability. Resolution dependence is studied using identical experiments with 1° and 1/4° NEMO model runs over 1960–2010. The analysis shows that much of the variability in the AMOC at 26° N can be related to the wind strength over the North Atlantic, through mechanisms lagged on different timescales. At ~ 1-year lag the January–June difference of mean sea level pressure between high and mid-latitudes in the North Atlantic explains 35–50% of the interannual AMOC variability (with negative correlation between wind strength and AMOC). At longer lead timescales ~ 4 years, strong (weak) winds over the northern North Atlantic (specifically linked to the NAO index) are followed by higher (lower) AMOC transport, but this mechanism only works in the 1/4° model. Analysis of the density correlations suggests an increase (decrease) in deep water formation in the North Atlantic subpolar gyre to be the cause. Therefore another 30% of the AMOC variability at 26° N can be related to density changes in the top 1000 m in the Labrador and Irminger seas occurring ~ 4 years earlier.