864 resultados para Primary and secondary schools


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sox9 is a master transcription factor in chondrocyte differentiation. Several lines of evidence suggest that the p38 mitogen-activated protein kinase (MAPK) pathway is involved in chondrocyte differentiation. In the present study, we examined the roles of p38 in the regulation of SOX9 activity and chondrogenesis. ^ COS7 cells were transfected with a SOX9 expression vector and 4x48-p89, a luciferase construction harboring four tandem copies of a SOX9-dependent 48-bp enhancer in Col2a1. Coexpression of MKK6EE, a constitutively active mutant of MKK6, a MAPKK that specifically activates p38, further increased the activity of the SOX9-dependent 48-bp enhancer about 5-fold, and SOX9 protein levels were not increased under these conditions. This increase in enhancer activity was not observed in a mutant enhancer construct harboring mutations that abolish SOX9 binding. These data strongly suggested that activation of the p38 pathway results in increased activity of SOX9. In addition, the increase of the activity of the SOX9-dependent 48-bp enhancer by MKK6EE was also observed in primary chondrocytes, and this increase was abolished by coexpression of a p38 phosphatase, MKP5, and p38 specific inhibitors. Furthermore, treatment of primary chondrocytes with p38 inhibitors decreased the expression of Col2a1, a downstream target of Sox9, without affecting Sox9 RNA levels, further supporting the hypothesis that p38 plays a role in regulating Sox9 activity in chondrocytes. ^ To further study the role of the p38 MAPK pathway in chondrogenesis, we generated transgenic mice that express MKK6EE in chondrocytes under the control of the Col2a1 promoter/intron regulatory sequences. These mice showed a dwarf phenotype characterized by reduced chondrocyte proliferation and a delay in the formation of primary and secondary ossification centers. Histological analysis using in situ hybridization showed reduced expression of Indian hedgehog, PTH/PTHrP receptor, cyclin D1 and increased expression of p21. In addition, consistent with the notion that Sox9 activity was increased in these mice, transgenic mice that express MKK6EE in chondrocytes showed phenotypes similar to those of mice that overexpress SOX9 in chondrocytes. Therefore, our study provides in vivo evidence for the role of p38 in chondrocyte differentiation and suggests that Sox9 is a downstream target of the p38 MAPK pathway. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basalts from DSDP Site 417 (109 Ma) exhibit the effects of several stages of alteration reflecting the evolution of seawater-derived solution compositions and control by the structure and permeability of the crust. Characteristic secondary mineral assemblages occur in often superimposed alteration zones within individual basalt fragments. By combining bulk rock and single phase chemical analyses with detailed mineralogic and petrographic studies, chemical changes have been determined for most of the alteration stages identified in the basalts. 1) Minor amounts of saponite, chlorite, and pyrite formed locally in coarse grained portions of massive units, possibly at high temperatures during initial cooling of the basalts. No chemical changes could be determined for this stage. 2) Possible mixing of cooled hydrothermal fluids with seawater resulted in the formation of celadonite-nontronite and Fe-hydroxide-rich black halos around cracks and pillow rims. Gains of K, Rb, H20, increase of Fe 3 +/FeT and possibly some losses of Ca and Mg occurred during this stage. 3a) Extensive circulation of oxygenated seawater resulted in the formation of various smectites, K-feldspar, and Fe-hydroxides in brown and light grey alteration zones around formerly exposed surfaces. K, Rb, H20, and occasionally P were added to the rocks, Fe3+/FeT increased, and Ca, Mg, Si and occasionally Al and Na were lost. 3 b) Anoxic alteration occurred during reaction of basalt with seawater at low water-rock ratios, or with seawater that had previously reacted with basalt. Saponite-rich dark grey alteration zones formed which exhibit very little chemical change: generally only slight increases in Fe 3 +/FeT and H20 occurred. 4) Zeolites and calcite formed from seawater-derived fluids modified by previous reactions with basalt. Chemical changes involved increases of Ca, Na, H20 , and CO2 in the rocks. 5) A late stage of anoxic conditions resulted in the formation of minor amounts of Mn-calcites and secondary sulfides in previously oxidized rocks. No chemical changes were determined for this stage. Recognition of such alteration sequences is important in understanding the evolution of submarine hydrothermal systems and in interpreting chemical exchange due to seawater-basalt reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that microscopic algae dominate in source material of organic matter of black shales, and admixture of residues of organisms and terrestrial humic material is contained. The main direction of source material transformation during syngenesis and sedimentogenesis is associated with jellofication resulting to formation of organic matter of significantly sapropelic type. Low reflectance of vitrinite and alginite from organic matter refer to the primary and secondary lignite stages of its carbonification. Significantly sapropel type of organic matter and low stage of carbonification are reliable criteria for assigning black shales to the category of potential oil source strata.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We detail the petrography and mineralogy of 145 basaltic rocks from the top, middle, and base of flow units identified on shipboard along with associated pyroclastic samples. Our account includes representative electron microprobe analyses of primary and secondary minerals; 28 whole-rock major-oxide analyses; 135 whole-rock analyses each for 21 trace elements; 7 whole-rock rare-earth analyses; and 77 whole-rock X-ray-diffraction analyses. These data show generally similar petrography, mineralogy, and chemistry for the basalts from all four sites; they are typically subalkaline and consanguineous with limited evolution along the tholeiite trend. Limited fractionation is indicated by immobile trace elements; some xenocrystic incorporation from more basic material also occurred. Secondary alteration products indicate early subaerial weathering followed by prolonged interaction with seawater, most likely below 150°C at Holes 552, 553A, and 554A. At Hole 555, greenschist alteration affected the deepest rocks (olivine-dolerite) penetrated, at 250-300°C.