924 resultados para Precisão Sub-Pixel
Hygrothermal Features of Laterite Dimension Stones for Sub-Saharan Residential Building Construction
Resumo:
The building sector is widely recognized as having a major impact on sustainable development. Both in developed and developing countries, sustainability in buildings approaches are growing. Laterite dimension stone (LDS) is a building material that was traditionally used in sub-Saharan Africa, but its technical features still need to be assessed. This article presents some results of a study focused on the characterization of LDS exploited in Burkina Faso for building purposes. The measured average thermal conductivity is 0.51 W/mK, which increases with water content and evolves with the specific gravity and with porosity. Rock mineral phases (quartz, goethite, hematite, magnetite) are cemented by kaolinite. The porosity of the material is high (30%), with macropores visible on the surface and found in the rock inner structure as well. Results from the hygrothermal monitoring of a pilot building are also presented.
Resumo:
The fluid immobile High Field Strength Elements (HFSE) Nb and Ta can be used to distinguish between the effects of variable extents of melting and prior source depletion of the Tongan sub-arc mantle. Melting of spinel Iherzolite beneath the Lau Basin back-arc spreading centres has the ability to fractionate Nb from Ta due to the greater compatibility of the latter in clinopyroxene. The identified spatial variation in plate velocities and separation of melt extraction zones, combined with extremely depleted lavas make Tonga an ideal setting in which to test models for arc melt generation and the role of back-arc magmatism. We present new data acquired by laser ablation-ICPMS of fused sample glasses produced without the use of a melt fluxing agent. The results show an arc trend towards strongly sub-chondritic Nb/Ta (
Resumo:
Antimony doped tin oxide (ATO) was studied as a support material for IrO2 in proton exchange membrane water electrolyser (PEMWE). Adams fusion method was used to prepare the IrO2-ATO catalysts. The physical and electrochemical characterisation of the catalysts were carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder conductivity, cyclic voltammetry (CV) and membrane electrode assembly (MEA) polarisation. The BET surface area and electronic conductivity of the supported catalysts were found to be predominantly arisen from the IrO2. Supported catalyst showed higher active surface area than the pristine IrO2 in CV analysis with 85% H3PO4 as electrolyte. The MEA performance using Nafion®−115 membrane at 80 °C and atmospheric pressure showed a better performance for IrO2 loading ≥60 wt.% than the pristine IrO2 with a normalised current density of 1625 mA cm−2 @1.8 V for the 60% IrO2-ATO compared to 1341 mA cm−2 for the pristine IrO2 under the same condition. The higher performance of the supported catalysts was mainly attributed to better dispersion of active IrO2 on electrochemically inactive ATO support material, forming smaller IrO2 crystallites. A 40 wt.% reduction in the IrO2 was achieved by utilising the support material.
Resumo:
Epitaxial (001)-oriented 0.7Pb(Mg0.33Nb0.67)O3-0.3PbTiO3 (PMN-PT) thin films were deposited by pulsed laser deposition on vicinal SrTiO3 (001) substrates using La0.7Sr0.3MnO3 as bottom electrode. Detailed microstructural investigations of these films were carried out using X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). Polarization-field hysteresis curves were measured at room temperature. Spontaneous polarization P s , remnant polarization P r and coercive voltage V c were found to be 25 μC/cm2, 15 μC/cm2 and 0.81 V, respectively. Field dependent dielectric constant measurements exhibited butterfly shaped curves, indicating the true ferroelectric nature of these films at room temperature. The dielectric constant and the dielectric loss at 100 kHz were found to be 238 and 0.14, respectively. The local piezoelectric properties of PMN-PT films were investigated by piezoelectric force microscopy and were found to exhibit a local piezoelectric coefficient of 7.8 pm/V.
Resumo:
N,O-ligated Pd(II) complexes show considerable promise for the oxidation of challenging secondary aliphatic alcohols. The crystal structures of the highly active complexes containing the 8-hydroxyquinoline-2-carboxylic acid (HCA) and 8-hydroxyquinoline-2-sulfonic acid (HSA) ligands have been obtained. The (HSA)Pd(OAc)2 system can effectively oxidise a range of secondary alcohols, including unactivated alcohols, within 4–6 h using loadings of 0.5 mol%, while lower loadings (0.2 mol%) can be employed with extended reaction times. The influence of reaction conditions on catalyst degradation was also examined in these studies.
Resumo:
Large range well ordered epitaxial ferrimagnetic nominally Fe3O4 structures were fabricated by pulsed-laser deposition and embedded in ferroelectric PbZrxTi1-xO3 (x = 0.2, 0.52) epitaxial films. Magnetite dots were investigated by magnetic force microscopy and exhibited magnetic domain contrast at room temperature (RT). Embedding ferroelectric PbZrxTi1-xO3 layers exhibit remnant polarization values close to the values of single epitaxial layers. Transmission electron microscopy demonstrated the epitaxial growth of the composites and the formation of the ferrimagnetic and ferroelectric phases. Physical and structural properties of these composites recommend them for investigations of stress mediated magneto-electric coupling at room temperature. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692583]
Resumo:
The present study examined the effects of administering selective 5-HT antagonists and agonists to rats tested in the elevated zero-maze (EZM) model of anxiety. The EZM paradigm has advantages over the elevated plus-maze (EPM) paradigm with respect to measuring anxiety, yet has been utilized less frequently. Three experiments were conducted each with a diazepam control (0.25, 0.5 and 0.75 mg/kg). In the first experiment, we administered the 5-HT2C antagonist RS 102221 (0.5, 1.0, and 2.0 mg/kg) and 5-HT2C agonist MK-212 (0.25, 0.5 and 0.75 mg/kg); in the second experiment, we administered the 5-HT3 antagonist Y-25130 (0.1, 1.0 and 3.0 mg/kg) and 5-HT3 agonist SR 57227A (0.1, 1.0 and 3.0 mg/kg), and in the third experiment, we administered the 5-HT4 antagonist RS 39604 (0.01, 0.1, 1.0 mg/kg) and 5-HT4 agonist RS 67333 (0.01, 0.1 and 0.5 mg/kg). The administration of 5-HT2/3/4 subtype antagonists all generated behavioral profiles indicative of anxiolytic-like effects in the EZM, which was apparent from examination of both traditional and ethological measures. While little effect was observed from 5-HT2 and 5-HT3 agonists, the 5-HT4 agonist RS 67333 was found to produce a paradoxical anxiolytic-like effect similar to that produced by the 5-HT4 antagonist RS 39604. We conclude by discussing the implications of these findings.
Resumo:
The envelopes of AGB stars are irradiated externally by ultraviolet photons; hence, the chemistry is sensitive to the photodissociation of N$_2$ and CO, which are major reservoirs of nitrogen and carbon, respectively. The photodissociation of N$_2$ has recently been quantified by laboratory and theoretical studies. Improvements have also been made for CO photodissociation. For the first time, we use accurate N$_2$ and CO photodissociation rates and shielding functions in a model of the circumstellar envelope of the carbon-rich AGB star, IRC +10216. We use a state-of-the-art chemical model of an AGB envelope, the latest CO and N$_2$ photodissociation data, and a new method for implementing molecular shielding functions in full spherical geometry with isotropic incident radiation. We compare computed column densities and radial distributions of molecules with observations. The transition of N$_2$ $\to$ N (also, CO $\to$ C $\to$ C$^+$) is shifted towards the outer envelope relative to previous models. This leads to different column densities and radial distributions of N-bearing species, especially those species whose formation/destruction processes largely depend on the availability of atomic or molecular nitrogen, for example, C$_n$N ($n$=1, 3, 5), C$_n$N$^-$ ($n$=1, 3, 5), HC$_n$N ($n$=1, 3, 5, 7, 9), H$_2$CN and CH$_2$CN. The chemistry of many species is directly or indirectly affected by the photodissociation of N$_2$ and CO, especially in the outer shell of AGB stars where photodissociation is important. Thus, it is important to include N$_2$ and CO shielding in astrochemical models of AGB envelopes and other irradiated environments. In general, while differences remain between our model of IRC +10216 and the observed molecular column densities, better agreement is found between the calculated and observed radii of peak abundance.
Resumo:
The abrasion damage on retrieved CoCrMo based hip joints is reported to be influenced by the entrainment of micron and sub-micron sized debris/hard particles. This paper represents the first attempt to look into the effects of relatively soft abrasives with micron and sub-micron dimensions on the abrasion mechanisms and the abrasion-corrosion performance of the cast CoCrMo in simulated hip joint environments. A modified micro-abrasion tester incorporating a liquid tank and a three-electrode electrochemical cell was used. Al O (300 nm and 1 μm) and sub-micron sized BaSO abrasives were chosen as being comparable in the size and hardness to the wear particles found in vivo. Results show that the specific wear rates of cast CoCrMo are dependent on the abrasive particle size, hardness and volume concentration. Larger particle size, higher hardness and greater abrasive volume fractions gave greater wear rates. The wear-induced corrosion current generally increases with increasing wear rates, and the presence of proteins seems to suppress the wear-induced corrosion current especially when abrasive volume fractions were high. This study shows that the nature of abrasives and the test solutions are both important in determining the wear mechanisms and the abrasion-corrosion response of cast CoCrMo. These findings provide new and important insights into the in vivo wear mechanisms of CoCrMo. © 2009 Elsevier B.V. All rights reserved.
Resumo:
A new pathway to (+)-inthomycin C is reported that exploits an O-directed free radical hydrostannation reaction on (−)-12 and a Stille cross-coupling as key steps. Significantly, the latter process was effected on 19 where a gauche-pentane repulsive interaction could interfere. Our stereochemical studies on the alkynol (−)-12 and the enyne (+)-7 confirm that Ryu and Hatakeyama’s (3S)-stereochemical revision of (+)-inthomycin C is invalid and that Zeeck and Taylor’s original (3R)-stereostructure for (+)-inthomycin C is correct.
Resumo:
Abstract Image
Herein a new double O-directed free radical hydrostannation reaction is reported on the structurally complex dialkyldiyne 11. Through our use of a conformation-restraining acetal to help prevent stereocenter-compromising 1,5-H-atom abstraction reactions by vinyl radical intermediates, the two vinylstannanes of 10 were concurrently constructed with high stereocontrol using Ph3SnH/Et3B/O2. Distannane 10 was thereafter elaborated into the bis-vinyl iodide 9 via O-silylation and double I–Sn exchange; double Stille coupling of 9, O-desilylation, and oxidation thereafter furnished 8.
Resumo:
A technique for optimizing the efficiency of the sub-map method for large-scale simultaneous localization and mapping (SLAM) is proposed. It optimizes the benefits of the sub-map technique to improve the accuracy and consistency of an extended Kalman filter (EKF)-based SLAM. Error models were developed and engaged to investigate some of the outstanding issues in employing the sub-map technique in SLAM. Such issues include the size (distance) of an optimal sub-map, the acceptable error effect caused by the process noise covariance on the predictions and estimations made within a sub-map, when to terminate an existing sub-map and start a new one and the magnitude of the process noise covariance that could produce such an effect. Numerical results obtained from the study and an error-correcting process were engaged to optimize the accuracy and convergence of the Invariant Information Local Sub-map Filter previously proposed. Applying this technique to the EKF-based SLAM algorithm (a) reduces the computational burden of maintaining the global map estimates and (b) simplifies transformation complexities and data association ambiguities usually experienced in fusing sub-maps together. A Monte Carlo analysis of the system is presented as a means of demonstrating the consistency and efficacy of the proposed technique.