994 resultados para Posteroanterior motion test
Resumo:
This poster highlights the bowel cancer screening programme is being introduced for all 60 to 74 year olds. If you are in this age group a kit will be sent by post so you can do the test at home. You are encouraged to look out for the kit as it could save your life.
Resumo:
This leaflet provides step-by-step instructions on using the Faecal Immunochemical�Test (FIT) for bowel cancer screening. This kit is slightly different to the one we usually use as part of Northern Ireland��'s bowel cancer screening programme. It is easier to complete for people who are partially sighted and is sent following discussion with the screening helpline team.
Resumo:
This leaflet provides step by step instructions on using the Faecal Occult Blood test (FOBt) for bowel cancer screening.The translations are of the 2010 versions when screening was for 60��-69 year olds but this has been extended to 60��-74 year olds.
Resumo:
This leaflet provides step by step instructions on using the Faecal Immunochemical Test (FIT) for bowel cancer screening.The translations are of the 2010 versions when screening was for 60��-69 year olds but this has been extended to 60��-74 year olds.
Resumo:
Testing for high-risk human papillomavirus (HR-HPV) as triage and test of cure was introduced into the Northern Ireland Cervical Screening Programme on Monday 28 January 2013. This policy change will significantly alter the screening pathway for women with a mild dyskaryosis or borderline smear result.
Resumo:
Introduction: Coronary magnetic resonance angiography (MRA) is a medical imaging technique that involves collecting data from consecutive heartbeats, always at the same time in the cardiac cycle, in order to minimize heart motion artifacts. This technique relies on the assumption that coronary arteries always follow the same trajectory from heartbeat to heartbeat. Until now, choosing the acquisition window in the cardiac cycle was based exclusively on the position of minimal coronary motion. The goal of this study was to test the hypothesis that there are time intervals during the cardiac cycle when coronary beat-to-beat repositioning is optimal. The repositioning uncertainty values in these time intervals were then compared with the intervals of low coronary motion in order to propose an optimal acquisition window for coronary MRA. Methods: Cine breath-hold x-ray angiograms with synchronous ECG were collected from 11 patients who underwent elective routine diagnostic coronarography. Twenty-three bifurcations of the left coronary artery were selected as markers to evaluate repositioning uncertainty and velocity during cardiac cycle. Each bifurcation was tracked by two observers, with the help of a user-assisted algorithm implemented in Matlab (The Mathworks, Natick, MA, USA) that compared the trajectories of the markers coming from consecutive heartbeats and computed the coronary repositioning uncertainty with steps of 50ms until 650ms after the R-wave. Repositioning uncertainty was defined as the diameter of the smallest circle encompassing the points to be compared at the same time after the R-wave. Student's t-tests with a false discovery rate (FDR, q=0.1) correction for multiple comparison were applied to see whether coronary repositioning and velocity vary statistically during cardiac cycle. Bland-Altman plots and linear regression were used to assess intra- and inter-observer agreement. Results: The analysis of left coronary artery beat-to-beat repositioning uncertainty shows a tendency to have better repositioning in mid systole (less than 0.84±0.58mm) and mid diastole (less than 0.89±0.6mm) than in the rest of the cardiac cycle (highest value at 50ms=1.35±0.64mm). According to Student's t-tests with FDR correction for multiple comparison (q=0.1), two intervals, in mid systole (150-200ms) and mid diastole (550-600ms), provide statistically better repositioning in comparison with the early systole and the early diastole. Coronary velocity analysis reveals that left coronary artery moves more slowly in end systole (14.35±11.35mm/s at 225ms) and mid diastole (11.78±11.62mm/s at 625ms) than in the rest of the cardiac cycle (highest value at 25ms: 55.96±22.34mm/s). This was confirmed by Student's t-tests with FDR correction for multiple comparison (q=0.1, FDR-corrected p-value=0.054): coronary velocity values at 225, 575 and 625ms are not much different between them but they are statistically inferior to all others. Bland-Altman plots and linear regression show that intra-observer agreement (y=0.97x+0.02 with R²=0.93 at 150ms) is better than inter-observer (y=0.8x+0.11 with R²=0.67 at 150ms). Discussion: The present study has demonstrated that there are two time intervals in the cardiac cycle, one in mid systole and one in mid diastole, where left coronary artery repositioning uncertainty reaches points of local minima. It has also been calculated that the velocity is the lowest in end systole and mid diastole. Since systole is less influenced by heart rate variability than diastole, it was finally proposed to test an acquisition window between 150 and 200ms after the R-wave.
Resumo:
To improve the serodiagnosis of human toxocariasis, a sensitive and specific enzyme-linked immunoelectrotransfer blot (EITB-IgG) test was developed and evaluated using Toxocara canislarvae excretory-secretory antigens for detecting anti-Toxocara IgG antibodies. The EITB-IgG profile of toxocariasis was characterized by comparing 27 sera from patients with toxocariasis, 110 sera from healthy subjects and 186 sera from patients with other helminth diseases (ascariasis, ancylostomiasis, trichuriasis, enterobiasis, strongyloidiasis, hymenolepiasis, diphyllobothriasis, taeniasis, cysticercosis, hydatidosis and fascioliasis). Antigenic bands of 24, 28, 30, 35, 56, 117, 136 and 152 kDa were predominantly recognized in sera from all patients with toxocariasis. However, only bands of 24-35 kDa were highly specific for Toxocara infection (98.3%), whereas other antigenic bands observed displayed cross-reactivity. Additionally, when the results of the EITB-IgG test were compared to those of the ELISA-IgG test, a 100% concordance was observed for positive results in human toxocariasis cases. The concordance for negative results between the two tests for healthy subjects and patients with other helminth diseases were 96.3% and 53.7%, respectively, showing that the EITB-IgG test has a higher specificity than ELISA. In conclusion, the EITB-IgG test is a very useful tool to confirm the serological diagnosis of human toxocariasis.