784 resultados para Portable interactive devices
Resumo:
Pollination services are economically important component of agricultural biodiversity which enhance the yield and quality of many crops. An understanding of the suitability of extant habitats for pollinating species is crucial for planning management actions to protect and manage these service providers. In a highly modified agricultural ecosystem, we tested the effect of different pollination treatments (open, autonomous self- and wind-pollination) on pod set, seed set, and seed weight in field beans (Vicia faba). We also investigated the effect of semi-natural habitats and flower abundance on pollinators of field beans. Pollinator sampling was undertaken in ten field bean fields along a gradient of habitat complexity; CORINE land cover classification was used to analyse the land use patterns between 500–3000 m around the sites. Total yield from open-pollination increased by 185% compared to autonomous self-pollination. There was positive interactive effect of local flower abundance and cover of semi-natural habitats on overall abundance of pollinators at 1500 and 2000 m, and abundance of bumblebees (Bombus spp.) at 1000–2000 m. In contrast, species richness of pollinators was only correlated with flower abundance and not with semi-natural habitats. We did not find a link between pod set from open-pollination and pollinator abundance, possibly due to variations in the growing conditions and pollinator communities between sites. We conclude that insect pollination is essential for optimal bean yields and therefore the maintenance of semi-natural habitats in agriculture-dominated landscapes should ensure stable and more efficient pollination services in field beans.
Resumo:
In recent years, ZigBee has been proven to be an excellent solution to create scalable and flexible home automation networks. In a home automation network, consumer devices typically collect data from a home monitoring environment and then transmit the data to an end user through multi-hop communication without the need for any human intervention. However, due to the presence of typical obstacles in a home environment, error-free reception may not be possible, particularly for power constrained devices. A mobile sink based data transmission scheme can be one solution but obstacles create significant complexities for the sink movement path determination process. Therefore, an obstacle avoidance data routing scheme is of vital importance to the design of an efficient home automation system. This paper presents a mobile sink based obstacle avoidance routing scheme for a home monitoring system. The mobile sink collects data by traversing through the obstacle avoidance path. Through ZigBee based hardware implementation and verification, the proposed scheme successfully transmits data through the obstacle avoidance path to improve network performance in terms of life span, energy consumption and reliability. The application of this work can be applied to a wide range of intelligent pervasive consumer products and services including robotic vacuum cleaners and personal security robots1.
Resumo:
This project engages people with learning disabilities as co-researchers and co-designers in the development of multisensory interactive artworks, with the aim of making museums or heritage sites more interesting, meaningful, and fun. This article describes our explorations, within this context, of a range of technologies including squishy circuits, littleBits, and easy-build websites, and presents examples of objects created by the co-researchers such as “sensory boxes” and interactive buckets, baskets, and boots. Public engagement is an important part of the project and includes an annual public event and seminar day, a blog rich with photos and videos of the workshops, and an activities book to give people ideas for creating their own sensory explorations of museums and heritage sites.
Resumo:
Callosobruchus maculatus has for years remained a serious menace in cowpea in Sub-Sahara Africa. The objective of this study was to investigate the effect of genotypic cowpea (Vigna unguiculata (L.) Walp) varieties, time and dose on C. maculatus exposed to powders of Piper guineense and Eugenia aromatica. Irrespective of duration and botanicals, bruchid reared on KDV showed the highest tolerance to both plant materials; while their counterparts from IAR48V were the most susceptible. Median lethal time (LT50) also varied according to the plant materials; with the highest in KDV reared bruchid [P. guineense: KDV (18.31), IAR48V (9.27), IFBV (13.17); E. aromatica: KDV (76.01), IAR48V (5.59), IFBV (6.49)]. There was a significant impact of cowpea variety (V), exposure time (T) and dose (D) on the tolerance of C. maculatus to both plant materials. The effect of all two-way (VxT, VxD, DxT) and three way interactions (V×T×D) on the tolerance of C. maculatus to both plant materials was also significant. Varietal effect was more pronounced in bruchids exposed to E. aromatica; while exposure time was more pronounced in bruchids exposed to P. guineense.
Resumo:
This paper reports findings from six field courses about student’s perceptions of iPads as mobile learning devices for fieldwork. Data were collected through surveys and focus groups. The key findings suggest that the multi-tool nature of the iPads and their portability were the main strengths. Students had some concerns over the safety of the iPads in adverse weather and rugged environments, though most of these concerns were eliminated after using the devices with protective cases. Reduced connectivity was found to be one of the main challenges for mobile learning. Finally, students and practitioners views of why they used the mobile devices for fieldwork did not align.
Resumo:
Mobile devices can enhance undergraduate research projects and students’ research capabilities. The use of mobile devices such as tablet computers will not automatically make undergraduates better researchers, but their use should make investigations, writing, and publishing more effective and may even save students time. We have explored some of the possibilities of using “tablets” and “smartphones” to aid the research and inquiry process in geography and bioscience fieldwork. We provide two case studies as illustration of how students working in small research groups use mobile devices to gather and analyze primary data in field-based inquiry. Since April 2010, Apple’s iPad has changed the way people behave in the digital world and how they access their music, watch videos, or read their email much as the entrepreneurs Steve Jobs and Jonathan Ive intended. Now with “apps” and “the cloud” and the ubiquitous references to them appearing in the press and on TV, academics’ use of tablets is also having an impact on education and research. In our discussion we will refer to use of smartphones such as the iPhone, iPod, and Android devices under the term “tablet”. Android and Microsoft devices may not offer the same facilities as the iPad/iphone, but many app producers now provide versions for several operating systems. Smartphones are becoming more affordable and ubiquitous (Melhuish and Falloon 2010), but a recent study of undergraduate students (Woodcock et al. 2012, 1) found that many students who own smartphones are “largely unaware of their potential to support learning”. Importantly, however, students were found to be “interested in and open to the potential as they become familiar with the possibilities” (Woodcock et al. 2012). Smartphones and iPads could be better utilized than laptops when conducting research in the field because of their portability (Welsh and France 2012). It is imperative for faculty to provide their students with opportunities to discover and employ the potential uses of mobile devices in their learning. However, it is not only the convenience of the iPad or tablet devices or smartphones we wish to promote, but also a way of thinking and behaving digitally. We essentially suggest that making a tablet the center of research increases the connections between related research activities.
Resumo:
From a construction innovation systems perspective, firms acquire knowledge from suppliers, clients, universities and institutional environment. Building information modelling (BIM) involves these firms using new process standards. To understand the implications on interactive learning using BIM process standards, a case study is conducted with the UK operations of a multinational construction firm. Data is drawn from: a) two workshops involving the firm and a wider industry group, b) observations of practice in the BIM core team and in three ongoing projects, c) 12 semi-structured interviews; and d) secondary publications. The firm uses a set of BIM process standards (IFC, PAS 1192, Uniclass, COBie) in its construction activities. It is also involved in a pilot to implement the COBie standard, supported by technical and management standards for BIM, such as Uniclass and PAS1192. Analyses suggest that such BIM process standards unconsciously shapes the firm's internal and external interactive learning processes. Internally standards allow engineers to learn from each through visualising 3D information and talking around designs with operatives to address problems during construction. Externally, the firm participates in trial and pilot projects involving other construction firms, government agencies, universities and suppliers to learn about the standard and access knowledge to solve its specific design problems. Through its BIM manager, the firm provides feedback to standards developers and information technology suppliers. The research contributes by articulating how BIM process standards unconsciously change interactive learning processes in construction practice. Further research could investigate these findings in the wider UK construction innovation system.
Resumo:
This project engages people with learning disabilities to participate as co-researchers and explore museum interpretation through multisensory workshops using microcontrollers and sensors to enable alternative interactive visitor experiences in museums and heritage sites. This article describes how the project brings together artists, engineers, and experts in multimedia advocacy, as well as people with learning disabilities in the co-design of interactive multisensory objects that replicate or respond to objects of cultural significance in our national collections. Through a series of staged multi-sensory art and electronics workshops, people with learning disabilities explore how the different senses could be utilised to augment existing artefacts or create entirely new ones. The co-researchers employ multimedia advocacy tools to reflect on and to communicate their experiences and findings.
Resumo:
A Universal Serial Bus (USB) Mass Storage Device (MSD), often termed a USB flash drive, is ubiquitously used to store important information in unencrypted binary format. This low cost consumer device is incredibly popular due to its size, large storage capacity and relatively high transfer speed. However, if the device is lost or stolen an unauthorized person can easily retrieve all the information. Therefore, it is advantageous in many applications to provide security protection so that only authorized users can access the stored information. In order to provide security protection for a USB MSD, this paper proposes a session key agreement protocol after secure user authentication. The main aim of this protocol is to establish session key negotiation through which all the information retrieved, stored and transferred to the USB MSD is encrypted. This paper not only contributes an efficient protocol, but also does not suffer from the forgery attack and the password guessing attack as compared to other protocols in the literature. This paper analyses the security of the proposed protocol through a formal analysis which proves that the information is stored confidentially and is protected offering strong resilience to relevant security attacks. The computational cost and communication cost of the proposed scheme is analyzed and compared to related work to show that the proposed scheme has an improved tradeoff for computational cost, communication cost and security.
Resumo:
This project engages people with learning disabilities to participate as co-researchers and explore museum interpretation through multisensory workshops using microcontrollers and sensors to enable alternative interactive visitor experiences in museums and heritage sites. This article describes how the project brings together artists, engineers, and experts in multimedia advocacy, as well as people with learning disabilities in the co-design of interactive multisensory objects that replicate or respond to objects of cultural significance in our national collections. Through a series of staged multi-sensory art and electronics workshops, people with learning disabilities explore how the different senses could be utilised to augment existing artefacts or create entirely new ones. The co-researchers employ multimedia advocacy tools to reflect on and to communicate their experiences and findings.
Resumo:
Background: Health care literature supports the development of accessible interventions that integrate behavioral economics, wearable devices, principles of evidence-based behavior change, and community support. However, there are limited real-world examples of large scale, population-based, member-driven reward platforms. Subsequently, a paucity of outcome data exists and health economic effects remain largely theoretical. To complicate matters, an emerging area of research is defining the role of Superusers, the small percentage of unusually engaged digital health participants who may influence other members. Objective: The objective of this preliminary study is to analyze descriptive data from GOODcoins, a self-guided, free-to-consumer engagement and rewards platform incentivizing walking, running and cycling. Registered members accessed the GOODcoins platform through PCs, tablets or mobile devices, and had the opportunity to sync wearables to track activity. Following registration, members were encouraged to join gamified group challenges and compare their progress with that of others. As members met challenge targets, they were rewarded with GOODcoins, which could be redeemed for planet- or people-friendly products. Methods: Outcome data were obtained from the GOODcoins custom SQL database. The reporting period was December 1, 2014 to May 1, 2015. Descriptive self-report data were analyzed using MySQL and MS Excel. Results: The study period includes data from 1298 users who were connected to an exercise tracking device. Females consisted of 52.6% (n=683) of the study population, 33.7% (n=438) were between the ages of 20-29, and 24.8% (n=322) were between the ages of 30-39. 77.5% (n=1006) of connected and active members met daily-recommended physical activity guidelines of 30 minutes, with a total daily average activity of 107 minutes (95% CI 90, 124). Of all connected and active users, 96.1% (n=1248) listed walking as their primary activity. For members who exchanged GOODcoins, the mean balance was 4,000 (95% CI 3850, 4150) at time of redemption, and 50.4% (n=61) of exchanges were for fitness or outdoor products, while 4.1% (n=5) were for food-related items. Participants were most likely to complete challenges when rewards were between 201-300 GOODcoins. Conclusions: The purpose of this study is to form a baseline for future research. Overall, results indicate that challenges and incentives may be effective for connected and active members, and may play a role in achieving daily-recommended activity guidelines. Registrants were typically younger, walking was the primary activity, and rewards were mainly exchanged for fitness or outdoor products. Remaining to be determined is whether members were already physically active at time of registration and are representative of healthy adherers, or were previously inactive and were incentivized to change their behavior. As challenges are gamified, there is an opportunity to investigate the role of superusers and healthy adherers, impacts on behavioral norms, and how cooperative games and incentives can be leveraged across stratified populations. Study limitations and future research agendas are discussed.
Resumo:
Background: Previous studies have pointed out that the mere elevation of the maxillary sinus membrane promotes bone formation without the use of augmentation materials. Purpose: This experimental study aimed at evaluating if the two-stage procedure for sinus floor augmentation could benefit from the use of a space-making device in order to increase the bone volume to enable later implant installation with good primary stability. Materials and Methods: Six male tufted capuchin primates (Cebus apella) were subjected to extraction of the three premolars and the first molar on both sides of the maxilla to create an edentulous area. The sinuses were opened using the lateral bone-wall window technique, and the membrane was elevated. One resorbable space-making device was inserted in each maxillary sinus, and the bone window was returned in place. The animals were euthanatized after 6 months, and biopsy blocks containing the whole maxillary sinus and surrounding soft tissues were prepared for ground sections. Results: The histological examination of the specimens showed bone formation in contact with both the schneiderian membrane and the device in most cases even when the device was displaced. The process of bone formation indicates that this technique is potentially useful for two-stage sinus floor augmentation. The lack of stabilization of the device within the sinus demands further improvement of space-makers for predictable bone augmentation. Conclusions: It is concluded that (1) the device used in this study did not trigger any important inflammatory reaction; (2) when the sinus membrane was elevated, bone formation was a constant finding; and (3) an ideal space-making device should be stable and elevate the membrane to ensure a maintained connection between the membrane and the secluded space.