720 resultados para Polybrominated diphenyl ethers
Resumo:
The objectives of this work were to study the suitability and highlight the advantages of the use of cross-linked ureasil-polyether hybrid matrices as film-forming systems. The results revealed that ureasil-polyethers are excellent film-forming systems due to specific properties, such as their biocompatibility, their cosmetic attractiveness for being able to form thin and transparent films, their short drying time to form films and their excellent bioadhesion compared to the commercial products known as strong adhesives. Rheological measurements have demonstrated the ability of these hybrid matrices to form a film in only a few seconds and Water Vapor Transmitting Rate (WVTR) showed adequate semi-occlusive properties suggesting that these films could be used as skin and wound protectors. Both the high skin bioadhesion and non-cytotoxic character seems to be improved by the presence of multiple amine groups in the hybrid molecules. © 2012 Elsevier B.V.
Resumo:
As part of our ongoing research on antioxidant agents from Brazilian flora, we screened the free radical scavenging activity of two extracts and eight fractions of Kielmeyera variabilis (Clusiaceae) using DPPH (2,2-diphenyl-1- picrylhydrazyl-hydrate) and ABTS+ [2,2'-azinobis(3- ethylenebenzothiazoline-6-sulfonic acid)] colorimetric assays. The ethyl acetate and n-butanol fractions of the leaves of K. variabilis displayed the strongest activity (IC50 of 3.5 ± 0.3 and 4.4 ± 0.2 μg mL -1 for DPPH and 6.6 ± 0.4 and 3.1 ± 0.1 μg mL -1 for ABTS+, respectively). Chromatographic fractionation of the most potent fractions led to identification of three flavonols with previously described antioxidant activity, quercitrin (1), quercetin-3-O- glucoside (3), and quercetin-3-O-galactoside (4), and of one biflavone, podocarpusflavone A (2). This is the first time that the presence of these flavonoids in Kielmeyera variabilis has been reported. © 2013 by the authors.
Resumo:
Background: Exposure to ultraviolet (UV) radiation causes various forms of acute and chronic skin damage, including immunosuppression, inflammation, premature aging and photodamage. Furthermore, it induces the generation of reactive oxygen species, produces proinflammatory cytokines and melanocyte-stimulating hormone (MSH) and increases tyrosinase activity. The aim of this study was to evaluate the potential photoprotective effects of Rheum rhaponticum L. rhizome extract on human UV-stimulated melanocytes.Methods: The effects of Rheum rhaponticum rhizome extract on tyrosine kinase activity, and on interleukin-1α (IL-1α), tumour necrosis factor α (TNF-α), and α-MSH production in human epidermal melanocytes were evaluated under UV-stimulated and non-stimulated conditions. Antioxidant activity was evaluated by lipid peroxidation and 1,1-dyphenyl-2-picryl-hydrazyl (DPPH) assays, while anti-tyrosinase activity was evaluated by the mushroom tyrosinase method.Results: Rheum rhaponticum L. rhizome extract showed in vitro antioxidant properties against lipid peroxidation, free radical scavenging and anti-tyrosinase activities, and inhibited the production of IL-1α, TNF-α, α-MSH, and tyrosine kinase activity in melanocytes subjected to UV radiation.Conclusions: These results support the inclusion of Rheum rhaponticum L. rhizome extract into cosmetic, sunscreen and skin care products for the prevention or reduction of photodamage. © 2013 Silveira et al; licensee BioMed Central Ltd.
Resumo:
Isatin (1H-indole-2,3-dione) is a chemical found in various medicinal plant species and responsible for a broad spectrum of pharmacological and biological properties that may be beneficial to human health, as an anticonvulsant, antibacterial, antifungal, antiviral, and anticancer agent. The aim of the present study was to determine in vitro the cytotoxic, mutagenic, and apoptotic effects of isatin on CHO-K1 and HeLa cells using the MTT viability assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide), micronucleus (MN) test, apoptosis index, and nuclear division index (NDI). The 5 isatin concentrations evaluated in the mutagenicity and apoptosis tests were 0.5, 1, 5, 10, and 50 μM, selected through a preliminary MTT assay. Positive (doxorubicin, DXR) and negative (phosphate buffered saline, PBS) control groups were also included in the analysis. Isatin did not exert a mutagenic effect on CHO-K1 after 3 and 24 h of treatment or on HeLa cells after 24 h. However, 10 and 50 μM concentrations inhibited cell proliferation and promoted apoptosis in both CHO-K1 and HeLa cells. Data indicate that the cytotoxic, apoptotic, and antiproliferative effects of isatin were concentration independent and cell line independent. The authors thank Profa Dra Eiko Nakagawa Itano for the use the spectrophotometer and the Conselho Nacional para o Desenvolvimento Científico e Tecnológico for master's scholarships to P. M. Cândido-Bacani and grants to T. R. Calvo, W. Vilegas, E. A. Varanda and I. M. S. Cólus. The Conselho Nacional para o Desenvolvimento Científico e Tecnológico provided funding for this study. © 2013 Taylor & Francis Group, LLC.
Resumo:
This study evaluated the cytotoxicity of experimental adhesive systems (EASs) on odontoblast-like cells. Paper discs (n=132) were impregnated with 10 μL of each EAS-R1, R2, R3, R4, and R5 (in an ascending order of hydrophilicity), followed by photoactivation. R1 and R2 are nonsolvated hydrophobic blends, R3 represents a simplified etch-and-rinse adhesive system, and R4 and R5 represent simplified self-etch adhesive systems. Discs were immersed in Dulbecco's modified Eagle's medium for 24 h to obtain eluates applied on MDPC-23 cell cultures. No material was applied on discs used as control (R0). Cell viability [3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay], total protein (TP) production, alkaline phosphatase (ALP) activity, type of cell death, and degree of monomer conversion Fourier transform infrared (%DC-FTIR) were evaluated. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (α=0.05). Considering R0 (control) as having 100% of cell viability, R1, R2, R3, R4, and R5 reduced the metabolic activity of cells by 36.4, 3.1, 0.2, 21.5, and 65.7%, respectively, but only R1 and R5 differed from R0. Comparing with R0, lower TP production was observed for R1, R4, and R5, while ALP activity decreased for R1 and R5. Necrotic cell death was predominant for all EASs, but only R1, R4, and R5 differed from R0. Only R5 presented a different apoptotic cell death ratio from R0. R1 presented the lowest %DC (ca. 37%), whereas R4 and R5 presented the highest (ca. 56%). In conclusion, R2 and R3 were not toxic to the MDPC-23 cells, suggesting that the degree of hydrophilicity or %DC of the EASs alone were not responsible for their cytopathic effects. © 2013 Wiley Periodicals, Inc.
Resumo:
Ethnopharmacological relevance Propolis is a bee product with numerous biological and pharmacological properties, such as immunomodulatory and anti-inflammatory activities. It has been used in folk medicine as a healthy drink and in food to improve health and prevent inflammatory diseases. However, little is known about its mechanism of action. Thus, the goal of this study was to verify the antioxidant activity and to explore the anti-inflammatory properties of propolis by addressing its intracellular mechanism of action. Caffeic acid was investigated as a possible compound responsible for propolis action. Materials and methods The antioxidant properties of propolis and caffeic acid were evaluated by using the 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging method. To analyze the anti-inflammatory activity, Raw 264.7 macrophages were treated with different concentrations of propolis or caffeic acid, and nitric oxide (NO) production, a strong pro-inflammatory mediator, was evaluated by the Griess reaction. The concentrations of propolis and caffeic acid that inhibited NO production were evaluated on intracellular signaling pathways triggered during inflammation, namely p38 mitogen-activated protein kinase (MAPK), c-jun NH2-terminal kinase (JNK1/2), the transcription nuclear factor (NF)-κB and extracellular signal-regulated kinase (ERK1/2), through Western blot using specific antibodies. A possible effect of propolis on the cytotoxicity of hepatocytes was also evaluated, since this product can be used in human diets. Results Caffeic acid showed a higher antioxidant activity than propolis extract. Propolis and caffeic acid inhibited NO production in macrophages, at concentrations without cytotoxicity. Furthermore, both propolis and caffeic acid suppressed LPS-induced signaling pathways, namely p38 MAPK, JNK1/2 and NF-κB. ERK1/2 was not affected by propolis extract and caffeic acid. In addition, propolis and caffeic acid did not induce hepatotoxicity at concentrations with strong anti-inflammatory potential. Conclusions Propolis exerted an antioxidant and anti-inflammatory action and caffeic acid may be involved in its inhibitory effects on NO production and intracellular signaling cascades, suggesting its use as a natural source of safe anti-inflammatory drugs. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Alimentos e Nutrição - FCFAR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Alimentos e Nutrição - FCFAR
Resumo:
O metilmercúrio (MeHg) é um composto comprovadamente neurotóxico cujos mecanismos degenerativos ainda não estão bem esclarecidos. No sistema nervoso central o MeHg é seqüestrado do interstício preferencialmente por astrócitos diminuindo a carga de exposição neuronal. Estudos in vitro demonstraram que a prolactina (PRL) possui efeitos mitogênicos sobre astrócitos, além de regular a expressão de citocinas pró-inflamatórias. Este estudo teve por objetivo investigar efeitos protetores da prolactina sobre distúrbios provocados por MeHg na viabilidade, morfologia, expressão de GFAP (glial fibrillary acidic protein), mitogênese e liberação de interleucina-1β (IL-1 β) em cultivo glial de córtex cerebral de ratos neonatos focalizando as células astrogliais. A exposição a diferentes concentrações de MeHg (0,1, 1, 5 e 10 μM) a diferentes intervalos de tempo (2, 4, 6, 18 e 24 h) ocorreu em cultivos com 10% de soro fetal bovino (SFB). Os resultados obtidos demonstraram diminuição progressiva de 20% e 62% da viabilidade celular após exposição às concentrações de 5 e 10 μM MeHg no tempo de 24 h, respectivamente, pelo método do 3-4,5-dimetiltiazol-2-yl)-2,5-difenil tetrazólio bromide (MTT) e distúrbios na expressão e distribuição de GFAP. Diferentes concentrações de prolactina (0.1, 1 e 10 nM) foram adicionadas em meio sem soro fetal bovino (FBS) para avaliar sua ação proliferativa isoladamente. Esta ação foi confirmada com indução de mitogênese em cerca de 4.5x em 18 h de observação na maior concentração (10 nM PRL). Nestas condições (sem SFB) foram analisados os efeitos da associação de 1 nM PRL + 5μM MeHg em teste de viabilidade, expressão de GFAP, morfologia celular, índice mitótico e liberação de IL-1β com o objetivo de estudar possíveis efeitos citoprotetores deste hormônio. A PRL atenuou os distúrbios provocados pelo MeHg, aumentando a viabilidade em 33%, a expressão de GFAP, proliferação celular (4x) e atenuando os distúrbios morfológicos, incluindo picnose nuclear e lise. Adicionalmente, a PRL induziu amplificação da liberação de IL1β quando associada ao MeHg. Estes achados confirmam a hipótese de que a PRL possa atuar como um agente citoprotetor em cultura primária de glia e particulamente em astrócitos, ação esta aditiva aos seus efeitos mitogênicos.