916 resultados para Physiological maturity
Resumo:
Objective. Functional near-infrared spectroscopy (fNIRS) is an emerging technique for the in vivo assessment of functional activity of the cerebral cortex as well as in the field of brain–computer interface (BCI) research. A common challenge for the utilization of fNIRS in these areas is a stable and reliable investigation of the spatio-temporal hemodynamic patterns. However, the recorded patterns may be influenced and superimposed by signals generated from physiological processes, resulting in an inaccurate estimation of the cortical activity. Up to now only a few studies have investigated these influences, and still less has been attempted to remove/reduce these influences. The present study aims to gain insights into the reduction of physiological rhythms in hemodynamic signals (oxygenated hemoglobin (oxy-Hb), deoxygenated hemoglobin (deoxy-Hb)). Approach. We introduce the use of three different signal processing approaches (spatial filtering, a common average reference (CAR) method; independent component analysis (ICA); and transfer function (TF) models) to reduce the influence of respiratory and blood pressure (BP) rhythms on the hemodynamic responses. Main results. All approaches produce large reductions in BP and respiration influences on the oxy-Hb signals and, therefore, improve the contrast-to-noise ratio (CNR). In contrast, for deoxy-Hb signals CAR and ICA did not improve the CNR. However, for the TF approach, a CNR-improvement in deoxy-Hb can also be found. Significance. The present study investigates the application of different signal processing approaches to reduce the influences of physiological rhythms on the hemodynamic responses. In addition to the identification of the best signal processing method, we also show the importance of noise reduction in fNIRS data.
Resumo:
Animal studies find that prenatal stress is associated with increased physiological and emotional reactivity later in life, mediated via fetal programming of the HPA axis through decreased glucocorticoid receptor (GR) gene expression. Post-natal behaviours, notably licking and grooming in rats, cause decreased behavioural indices of fear and reduced HPA axis reactivity mediated via increased GR gene expression. Post-natal maternal behaviours may therefore be expected to modify prenatal effects, but this has not previously been examined in humans. We examined whether, according to self-report, maternal stroking over the first weeks of life modified associations between prenatal depression and physiological and behavioral outcomes in infancy, hence mimicking effects of rodent licking and grooming. From a general population sample of 1233 first time mothers recruited at 20 weeks gestation we drew a stratified random sample of 316 for assessment at 32 weeks based on reported inter-partner psychological abuse, a risk to child development. Of these 271 provided data at 5, 9 and 29 weeks post delivery. Mothers reported how often they stroked their babies at 5 and 9 weeks. At 29 weeks vagal withdrawal to a stressor, a measure of physiological adaptability, and maternal reported negative emotionality were assessed. There was a significant interaction between prenatal depression and maternal stroking in the prediction of vagal reactivity to a stressor (p = .01), and maternal reports of infant anger proneness (p = .007) and fear (p = .043). Increasing maternal depression was associated with decreasing physiological adaptability, and with increasing negative emotionality, only in the presence of low maternal stroking. These initial findings in humans indicate that maternal stroking in infancy, as reported by mothers, has effects strongly resembling the effects of observed maternal behaviours in animals, pointing to future studies of the epigenetic, physiological and behavioral effects of maternal stroking.
Resumo:
Associations between low birth weight and prenatal anxiety and later psychopathology may arise from programming effects likely to be adaptive under some, but not other, environmental exposures and modified by sex differences. If physiological reactivity, which also confers vulnerability or resilience in an environment-dependent manner, is associated with birth weight and prenatal anxiety, it will be a candidate to mediate the links with psychopathology. From a general population sample of 1,233 first-time mothers recruited at 20 weeks gestation, a sample of 316 stratified by adversity was assessed at 32 weeks and when their infants were aged 29 weeks (N = 271). Prenatal anxiety was assessed by self-report, birth weight from medical records, and vagal reactivity from respiratory sinus arrhythmia during four nonstressful and one stressful (still-face) procedure. Lower birth weight for gestational age predicted higher vagal reactivity only in girls (interaction term, p = .016), and prenatal maternal anxiety predicted lower vagal reactivity only in boys (interaction term, p = .014). These findings are consistent with sex differences in fetal programming, whereby prenatal risks are associated with increased stress reactivity in females but decreased reactivity in males, with distinctive advantages and penalties for each sex.
Resumo:
The aim of this study was to investigate the capacity of three perennial legume species to access sources of varyingly soluble phosphorus (P) and their associated morphological and physiological adaptations. Two Australian native legumes with pasture potential (Cullen australasicum and Kennedia prostrata) and Medicago sativa cv. SARDI 10 were grown in sand under two P levels (6 and 40 µg P g−1) supplied as Ca(H2PO4)2·H2O (Ca-P, highly soluble, used in many fertilizers) or as one of three sparingly soluble forms: Ca10(OH)2(PO4)6 (apatite-P, found in relatively young soils; major constituent of rock phosphate), C6H6O24P6Na12 (inositol-P, the most common form of organic P in soil) and FePO4 (Fe-P, a poorly-available inorganic source of P). All species grew well with soluble P. When 6 µg P g−1 was supplied as sparingly soluble P, plant dry weight (DW) and P uptake were very low for C. australasicum and M. sativa (0.1–0.4 g DW) with the exception of M. sativa supplied with apatite-P (1.5 g). In contrast, K. prostrata grew well with inositol-P (1.0 g) and Fe-P (0.7 g), and even better with apatite-P (1.7 g), similar to that with Ca-P (1.9 g). Phosphorus uptake at 6 µg P g−1 was highly correlated with total root length, total rhizosphere carboxylate content and total rhizosphere acid phosphatase (EC 3.1.3.2) activity. These findings provide strong indications that there are opportunities to utilize local Australian legumes in low P pasture systems to access sparingly soluble soil P and increase perennial legume productivity, diversity and sustainability.
Resumo:
Change in morphological and physiological parameters in response to phosphorus (P) supply was studied in 11 perennial herbaceous legume species, six Australian native (Lotus australis, Cullen australasicum, Kennedia prorepens, K. prostrata, Glycine canescens, C. tenax) and five exotic species (Medicago sativa, Lotononis bainesii, Bituminaria bituminosa var albomarginata, Lotus corniculatus, Macroptilium bracteatum). We aimed to identify mechanisms for P acquisition from soil. Plants were grown in sterilised washed river sand; eight levels of P as KH2PO4 ranging from 0 to 384 μg P g−1 soil were applied. Plant growth under low-P conditions strongly correlated with physiological P-use efficiency and/or P-uptake efficiency. Taking all species together, at 6 μg P g−1 soil there was a good correlation between P uptake and both root surface area and total root length. All species had higher amounts of carboxylates in the rhizosphere under a low level of P application. Six of the 11 species increased the fraction of rhizosphere citrate in response to low P, which was accompanied by a reduction in malonate, except L. corniculatus. In addition, species showed different plasticity in response to P-application levels and different strategies in response to P deficiency. Our results show that many of the 11 species have prospects for low-input agroecosystems based on their high P-uptake and P-use efficiency.
Resumo:
Differentiated human neural stem cells were cultured in an inert three-dimensional (3D) scaffold and, unlike two-dimensional (2D) but otherwise comparable monolayer cultures, formed spontaneously active, functional neuronal networks that responded reproducibly and predictably to conventional pharmacological treatments to reveal functional, glutamatergic synapses. Immunocytochemical and electron microscopy analysis revealed a neuronal and glial population, where markers of neuronal maturity were observed in the former. Oligonucleotide microarray analysis revealed substantial differences in gene expression conferred by culturing in a 3D vs a 2D environment. Notable and numerous differences were seen in genes coding for neuronal function, the extracellular matrix and cytoskeleton. In addition to producing functional networks, differentiated human neural stem cells grown in inert scaffolds offer several significant advantages over conventional 2D monolayers. These advantages include cost savings and improved physiological relevance, which make them better suited for use in the pharmacological and toxicological assays required for development of stem cell-based treatments and the reduction of animal use in medical research.
Resumo:
Individual-based models (IBMs) can simulate the actions of individual animals as they interact with one another and the landscape in which they live. When used in spatially-explicit landscapes IBMs can show how populations change over time in response to management actions. For instance, IBMs are being used to design strategies of conservation and of the exploitation of fisheries, and for assessing the effects on populations of major construction projects and of novel agricultural chemicals. In such real world contexts, it becomes especially important to build IBMs in a principled fashion, and to approach calibration and evaluation systematically. We argue that insights from physiological and behavioural ecology offer a recipe for building realistic models, and that Approximate Bayesian Computation (ABC) is a promising technique for the calibration and evaluation of IBMs. IBMs are constructed primarily from knowledge about individuals. In ecological applications the relevant knowledge is found in physiological and behavioural ecology, and we approach these from an evolutionary perspective by taking into account how physiological and behavioural processes contribute to life histories, and how those life histories evolve. Evolutionary life history theory shows that, other things being equal, organisms should grow to sexual maturity as fast as possible, and then reproduce as fast as possible, while minimising per capita death rate. Physiological and behavioural ecology are largely built on these principles together with the laws of conservation of matter and energy. To complete construction of an IBM information is also needed on the effects of competitors, conspecifics and food scarcity; the maximum rates of ingestion, growth and reproduction, and life-history parameters. Using this knowledge about physiological and behavioural processes provides a principled way to build IBMs, but model parameters vary between species and are often difficult to measure. A common solution is to manually compare model outputs with observations from real landscapes and so to obtain parameters which produce acceptable fits of model to data. However, this procedure can be convoluted and lead to over-calibrated and thus inflexible models. Many formal statistical techniques are unsuitable for use with IBMs, but we argue that ABC offers a potential way forward. It can be used to calibrate and compare complex stochastic models and to assess the uncertainty in their predictions. We describe methods used to implement ABC in an accessible way and illustrate them with examples and discussion of recent studies. Although much progress has been made, theoretical issues remain, and some of these are outlined and discussed.
Resumo:
In this study we applied a smart biomaterial formed from a self-assembling, multi-functional synthetic peptide amphiphile (PA) to coat substrates with various surface chemistries. The combination of PA coating and alignment-inducing functionalised substrates provided a template to instruct human corneal stromal fibroblasts to adhere, become aligned and then bio-fabricate a highlyordered, multi-layered, three-dimensional tissue by depositing an aligned, native-like extracellular matrix. The newly-formed corneal tissue equivalent was subsequently able to eliminate the adhesive properties of the template and govern its own complete release via the action of endogenous proteases. Tissues recovered through this method were structurally stable, easily handled, and carrier-free. Furthermore, topographical and mechanical analysis by atomic force microscopy showed that tissue equivalents formed on the alignment-inducing PA template had highly-ordered, compact collagen deposition, with a two-fold higher elastic modulus compared to the less compact tissues produced on the non-alignment template, the PA-coated glass. We suggest that this technology represents a new paradigm in tissue engineering and regenerative medicine, whereby all processes for the biofabrication and subsequent self-release of natural, bioprosthetic human tissues depend solely on simple templatetissue feedback interactions.
Resumo:
The contractile cells in the heart (the cardiac myocytes) are terminally differentiated. In response to pathophysiological stresses, cardiac myocytes undergo hypertrophic growth or apoptosis, responses associated with the development of cardiac pathologies. There has been much effort expended in gaining an understanding of the stimuli which promote these responses, and in identifying the intracellular signaling pathways which are activated and potentially involved. These signaling pathways presumably modulate gene and protein expression to elicit the end-stage response. For the regulation of gene expression, the signal may traverse the cytoplasm to modulate nuclear-localized transcription factors as occurs with the mitogen-activated protein kinase or protein kinase B/Akt cascades. Alternatively, the signal may promote translocation of transcription factors from the cytoplasm to the nucleus as is seen with the calcineurin/NFAT and JAK/STAT systems. We present an overview of the principal signaling pathways implicated in the regulation of gene expression in cardiac myocyte pathophysiology, and summarize the current understanding of these pathways, the transcription factors they regulate and the changes in gene expression associated with the development of cardiac pathologies. Finally, we discuss how intracellular signaling and gene expression may be integrated to elicit the overall change in cellular phenotype.
Resumo:
The influence of thyroid hormone on estrogen actions has been demonstrated both in vivo and in vitro. In transient transfection assays, the effects of liganded thyroid hormone receptors (TR) on transcriptional facilitation by estrogens bound to estrogen receptors (ER) display specificity according to the following: 1) ER isoform, 2) TR isoform, 3) the promoter through which transcriptional facilitation occurs, and 4) cell type. Some of these molecular phenomena may be related to thyroid hormone signaling of seasonal limitations upon reproduction. The various combinations of these molecular interactions provide multiple and flexible opportunities for relations between two major hormonal systems important for neuroendocrine feedbacks and reproductive behaviors.
Resumo:
We hypothesized that chlorogenic acids, the main phenolics in coffee, many fruits and Ilex paraguariensis extracts, protect paraoxonase 1 activity in HDL from inactivation by chlorination at concentrations of HOCl (50 mu M) and chlorogenic acid (2-10 mu M) compatible with those found in humans. When human HDL was incubated in the presence of HOCl/OCl-, a concentration dependent loss of activity was apparent. Of interest, 5 caffeoylquinic acid at 5 mu mol/L affords more than 60% protection of the activity reaching 100% at 25 mu mol/L. This compound and the plant sources that are rich in them may be protectors of paraoxonase 1 activity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Diverse invertebrate and vertebrate species live in association with plants of the large Neotropical family Bromeliaceae. Although previous studies have assumed that debris of associated organisms improves plant nutrition, so far little evidence supports this assumption. In this study we used isotopic ((15)N) and physiological methods to investigate if the treefrog Scinax hayii, which uses the tank epiphytic bromeliad Vriesea bituminosa as a diurnal shelter, contributes to host plant nutrition. In the field, bromeliads with frogs had higher stable N isotopic composition (delta(15)N) values than those without frogs. Similar results were obtained from a controlled greenhouse experiment. Linear mixing models showed that frog feces and dead termites used to simulate insects that eventually fall inside the bromeliad tank contributed, respectively, 27.7% (+/- 0.07 SE) and 49.6% (+/- 0.50 SE) of the total N of V. bituminosa. Net photosynthetic rate was higher in plants that received feces and termites than in controls; however, this effect was only detected in the rainy, but not in the dry season. These results demonstrate for the first time that vertebrates contribute to bromeliad nutrition, and that this benefit is seasonally restricted. Since amphibian-bromeliad associations occur in diverse habitats in South and Central America, this mechanism for deriving nutrients may be important in bromeliad systems throughout the Neotropics.
Resumo:
This study investigated the effects of stocking density on the growth and fatty acid (FA) of Brycon insignis metabolism. Fingerlings (360) were distributed into eight ponds at two stocking densities (105 and 210 g/m(3)). The analysis of growth showed that the condition factor (K) and the coefficient of variation (CV) for body mass were not affected by stocking density. However, final body mass and length, specific growth rate (SGR), and weight gain (WG) were higher in the low stocking density group, which also presented a higher feed efficiency (FE) and survival (S). By contrast, muscle protein levels were higher in the high stocking density group. The plasma and muscle lipid content were not affected by stocking density, but fish reared at lower stocking density presented higher lipid concentration in the liver, with no differences in hepatosomatic index values. Even with the differences observed in metabolic and growth parameters, plasma cortisol was not affected by stocking density. The FA profile in the muscle and liver neutral fraction were not affected by stocking density, but the FA in the polar fractions differed between the two stocking densities. In the liver, total polyunsaturated fatty acids (PUFA) and PUFA n - 3 increased in higher stocking density, mainly due to an increase in docosahexaenoic acid (DHA). In addition, PUFA n - 6 were also increased in the higher stocking density group, mainly due to an increase in arachidonic acid (AA) and docosadienoic acid (22:2n - 6). In the muscle polar fraction, the saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) decreased in the animals from the higher stocking density group, and this reduction was compensated by an increase in PUFA n - 3 and PUFA n - 6, mainly the FA with 20-22 carbons (20:4n - 6: 22:4:n - 6; 22:5n - 6, 22:5n - 3, and 22:6n - 3). A different profile was observed for the C18 PUFAs, mainly 18:2n - 6 and 18:4n - 6, which were higher in the lower density stocking group. The data suggest that when living in high stocking density, B. insignis differentially utilizes the hepatic lipids as energy source and remodels the membrane fatty acids, with higher amounts of DHA in the polar muscle fraction compensated for by a decrease in MUFA. The zootechnical and physiological indices reveal that the lower stocking density group achieve overall better performance. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Acanthamoeba spp., known to cause keratitis and granulomatous encephalitis in humans, are frequently isolated from a variety of water sources. Here we report for the first time the characterization of an Acanthamoeba sp. (ACC01) isolated from tap water in Brazil. This organism is currently being maintained in an axenic growth medium. Phylogenetic analysis based on SSU rRNA gene sequences positioned the new isolate in genotype T4, closest to the keratitis-causing isolate, A. polyphaga ATCC 30461 (similar to 99% similarity). Acanthamoeba ACC01 and A. polyphaga 30461 both grew at 37 degrees C and were osmotically resistant, multiplying in hyperosmolar medium. Both isolates secreted comparable amounts of proteolytic enzymes, including serine peptidases that were optimally active at a near neutral/alkaline pH and resolved identically in gelatin gels. Incubation of gels at pH 4.0 with 2 mM DTT also indicated the secretion of similar cysteine peptidases. Altogether, the results point to the pathogenic potential of Acanthamoeba ACC01. (C) 2009 Elsevier Inc. All rights reserved.