896 resultados para Phosphate Loading
Resumo:
Cells of Candida guilliermondii (ATCC 201935) were permeabilised with surfactant treatment (CTAB or Triton X-100) or a freezing-thawing procedure. Treatments were monitored by in situ activities of the key enzymes involved in xylose metabolism, that is, glucose-6-phosphate dehydrogenase (G6PD), xylose reductase (XR) and xylitol dehydrogenase (XD). The permeabilising ability of the surfactants was dependent on its concentration and incubation time. The optimum operation conditions for the permeabilisation of C. guilliermondii with surfactants were 0.41 mM (CTAB) or 2.78 mM (Triton X-100), 30 degrees C, and pH 7 at 200 rpm for 50 min. The maximum permeabilisation measured in terms of the in situ G6PD activity observed was, in order, as follows: CTAB (122.4 +/- 15.7 U/g(cells)) > freezing-thawing, , (54.3 +/- 1.9 U/g(cells)) > Triton X-100 (23.5 +/- 0.0 U/g(cells)). These results suggest that CTAB surfactant is more effective in the permeabilisation of C. guilliermondii cells in comparison to the freezing-thawing and Triton X-100 treatments. Nevertheless, freezing-thawing was the only treatment that allowed measurable in situ XR activity. Therefore, freezing-thawing permeabilised yeast cells could be used as a source of xylose reductase for analytical purposes or for use in biotransformation process such as xylitol preparation from xylose. The level of in situ xylose reductase was found to be 13.2 +/- 0.1 U/g(cells).
Resumo:
Aim: Primary and secondary stabilities of immediately loaded mandibular implants restored with fixed prostheses (FP) using rigid or semirigid splinting systems were clinically and radiographically evaluated. Methods: Fifteen edentulous patients were rehabilitated using hybrid FP; each had 5 implants placed between the mental foramens. Two groups were randomly divided: group 1-FP with the conventional rigid bar splinting the implants and group 2-semi-rigid cantilever extension system with titanium bars placed in the 2 distal abutment cylinders. Primary stability was evaluated using resonance frequency analysis after installation of the implant abutments. The measurements were made at 3 times: T0, at baseline; T1, 4 months after implant placement; and T2, 8 months after implant placement. Presence of mobility and inflammation in the implant surrounding regions were checked. Stability data were submitted to statistical analysis for comparison between groups (P, 0.05). Results: Implant survival rate for the implants was of 100% in both groups. No significant differences in the mean implant stability quotient values were found for both groups from baseline and after the 8-month follow-up. Conclusion: The immediate loading of the implants was satisfactory, and both splinting conditions (rigid and semi-rigid) can be successfully used for the restoration of edentulous mandibles. (Implant Dent 2012;21:486-490)
Resumo:
Abstract Introduction Toxoplasmosis, a zoonotic protozoal disease caused by toxoplasma gondii, is prevalent throughout the world, affecting a large proportion of persons who usually have no symptoms. Glucose 6 phosphate dehydrogenase deficiency, an X-linked inherited disorder, is present in over 400 million people world wide. It is more common in tropical and subtropical countries and is one of the important causes of hemolytic anemia. Case presentation This case report relates the occurrence of the two diseases simultaneously in a child of five years old. Conclusion Patients with glucose-6-phosphate dehydrogenase deficiency are more susceptible to toxoplasmosis and this case report, reinforce the findings of this propensity and alert us for such possibility, what it is important, therefore, the treatment of toxoplasmosis can cause serious hemolysis in these patients.
Resumo:
Objective: To evaluate healing time before loading, areas compression and tension and location of insertion on mini-implant stability. Design: Six minipigs were used. Each animal received 3 mini-implants in each quadrant: 1 mini-implant was used as an unloaded control (G1, n = 24); the other 2 were loaded with 150 g-force at three time intervals (G2: immediate loading, G3: after 15 days and G4: after 30 days), with 16 mini-implant in each experimental group. After 120 days, tissue blocks of the areas of interest were harvested. Clinical analysis (exact Fisher test) determined the survival rate. Histological analysis (Kontron KS 300TM, Zeiss) quantified the fractional bone-toimplant contact (%BIC) and bone area (%BA) at each healing time point, areas of interest, and insertion site (ANOVA and t tests for dependent and independent samples). Results: The mini-implant survival rates were G1: 71%, G2: 50%, G3: 75% and G4: 63%, with no statistical differences between them. The groups presented similar %BIC and %BA. There were no differences between the compression and tension sides or maxillary and mandibular insertion sites. Conclusions: These results suggest that low-intensity immediate or early orthodontic loading does not affect mini-implant stability, because similar histomorphometric results were observed for all the groups, with partial osseointegration of the mini-implants present.
Resumo:
Bone remodeling is affected by mechanical loading and inflammatory mediators, including chemokines. The chemokine (C–C motif) ligand 3 (CCL3) is involved in bone remodeling by binding to C–C chemokine receptors 1 and 5 (CCR1 and CCR5) expressed on osteoclasts and osteoblasts. Our group has previously demonstrated that CCR5 down-regulates mechanical loading-induced bone resorption. Thus, the present study aimed to investigate the role of CCR1 and CCL3 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice. Our results showed that bone remodeling was significantly decreased in CCL3−/− and CCR1−/− mice and in animals treated with Met-RANTES (an antagonist of CCR5 and CCR1). mRNA levels of receptor activator of nuclear factor kappa-B (RANK), its ligand RANKL, tumor necrosis factor alpha (TNF-α) and RANKL/osteoprotegerin (OPG) ratio were diminished in the periodontium of CCL3−/− mice and in the group treated with Met-RANTES. Met-RANTES treatment also reduced the levels of cathepsin K and metalloproteinase 13 (MMP13). The expression of the osteoblast markers runt-related transcription factor 2 (RUNX2) and periostin was decreased, while osteocalcin (OCN) was augmented in CCL3−/− and Met-RANTES-treated mice. Altogether, these findings show that CCR1 is pivotal for bone remodeling induced by mechanical loading during orthodontic tooth movement and these actions depend, at least in part, on CCL3.
Resumo:
The effects of foliar and soil applied phosphite on grain yield in common bean (Phaseolus vulgaris L.) grown in a weathered soil under low and adequate phosphate availability were evaluated. In the first experiment, treatments were composed of a 2 x 7 + 2 factorial scheme, with 2 soil P levels supplied as phosphate (40 e 200 mg P dm-3 soil), 7 soil P levels supplied as phosphite (0-100 mg P dm-3 soil), and 2 additional treatments (without P supply in soil, and all P supplied as phosphite). In the second experiment, treatments were composed of a 2 x 3 x 2 factorial scheme, with 2 soil phosphate levels (40 e 200 mg P dm-3 soil), combined with 3 nutrient sources applied via foliar sprays (potassium phosphite, potassium phosphate, and potassium chloride as a control), and 2 foliar application numbers (single and two application). Additional treatments showed that phosphite is not P source for common bean nutrition. Phosphite supply in soil increased the P content in shoot (at full physiological maturity stage) and grains, but at the same time considerably decreased grain yield, regardless of the soil phosphate availability. Foliar sprays of phosphite decreased grain yield in plants grown under low soil phosphate availability, but no effect was observed in plants grown under adequate soil phosphate availability. In general, foliar sprays of phosphate did not satisfactorily improve grain yield of the common bean plants grown under low soil phosphate availability.
Resumo:
This paper emphasizes the influence of micro mechanisms of failure of a cellular material on its phenomenological response. Most of the applications of cellular materials comprise a compression loading. Thus, the study focuses on the influence of the anisotropy in the mechanical behavior of cellular material under cyclic compression loadings. For this study, a Digital Image Correlation (DIC) technique (named Correli) was applied, as well as SEM (Scanning Electron Microscopy) images were analyzed. The experimental results are discussed in detail for a closed-cell rigid poly (vinyl chloride) (PVC) foam, showing stress-strain curves in different directions and why the material can be assumed as transversely isotropic. Besides, the present paper shows elastic and plastic Poisson's ratios measured in different planes, explaining why the plastic Poisson's ratios approach to zero. Yield fronts created by the compression loadings in different directions and the influence of spring-back phenomenon on hardening curves are commented, also.
Resumo:
This work presents an investigation of the ductile tearing properties for a girth weld made of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves. Use of these materials is motivated by the increasing demand in the number of applications for manufacturing high strength pipes for the oil and gas industry including marine applications and steel catenary risers. Testing of the pipeline girth welds employed side-grooved, clamped SE(T) specimens and shallow crack bend SE(B) specimens with a weld centerline notch to determine the crack growth resistance curves based upon the unloading compliance (UC) method using the single specimen technique. Recently developed compliance functions and η-factors applicable for SE(T) and SE(B) fracture specimens with homogeneous material and overmatched welds are introduced to determine crack growth resistance data from laboratory measurements of load-displacement records.
Resumo:
Background: How damaged mitochondria are removed by mitophagy is not fully described. Results: Ischemia and reoxygenation (I/R)-induced injury triggers mitochondria association of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and mitophagy, and protein kinase Cδ (PKCδ) activation inhibits it. Conclusion: PKCδ-mediated phosphorylation of GAPDH inhibits mitophagy. Significance: GAPDH/PKCδ is a signaling switch, which is activated during ischemic injury to regulate the balance between cell survival by mitophagy and cell death by apoptosis.
Resumo:
ZUSAMMENFASSUNG Die Tauglichkeit von Hybridmaterialien auf der Basis von Zinkphosphathydrat-Zementen zum Einsatz als korrosionshemmende anorganische Pigmente oder zur prothetischen und konservierenden Knochen- und Zahntherapie wird weltweit empirisch seit den neunziger Jahren intensiv erforscht. In der vorliegenden Arbeit wurden zuerst Referenzproben, d.h. alpha-und beta-Hopeite (Abk. a-,b-ZPT) dank eines hydrothermalen Kristallisationsverfahrens in wässerigem Milieu bei 20°C und 90°C hergestellt. Die Kristallstruktur beider Polymorphe des Zinkphosphattetrahydrats Zn3(PO4)2 4 H2O wurde komplett bestimmt. Einkristall-strukturanalyse zeigt, daß der Hauptunterschied zwischen der alpha-und beta-Form des Zinkphosphattetrahydrats in zwei verschiedenen Anordnungen der Wasserstoffbrücken liegt. Die entsprechenden drei- und zweidimensionalen Anordnungen der Wasserstoffbrücken der a-und b-ZPT induzieren jeweils unterschiedliches thermisches Verhalten beim Aufwärmen. Während die alpha-Form ihr Kristallwasser in zwei definierten Stufen verliert, erzeugt die beta-Form instabile Dehydratationsprodukt. Dieses entspricht zwei unabhängigen, aber nebeneinander ablaufenden Dehydratationsmechanismen: (i) bei niedrigen Heizraten einen zweidimensionalen Johnson-Mehl-Avrami (JMA) Mechanismus auf der (011) Ebene, der einerseits bevorzugt an Kristallkanten stattfindet und anderseits von existierenden Kristalldefekten auf Oberflächen gesteuert wird; (ii) bei hohen Heizraten einem zweidimensionalen Diffusionsmechanismus (D2), der zuerst auf der (101) Ebene und dann auf der (110) Ebene erfolgt. Durch die Betrachtung der ZPT Dehydratation als irreversibele heterogene Festkörperstufenreaktion wurde dank eines „ähnlichen Endprodukt“-Protokolls das Dehydratationsphasendiagramm aufgestellt. Es beschreibt die möglichen Zusammenhänge zwischen den verschiedenen Hydratationszuständen und weist auf die Existenz eines Übergangszustandes um 170°C (d.h. Reaktion b-ZPT a-ZPT) hin. Daneben wurde auch ein gezieltes chemisches Ätzverfahren mit verdünnten H3PO4- und NH3 Lösungen angewendet, um die ersten Stufe des Herauslösens von Zinkphosphat genau zu untersuchen. Allerdings zeigen alpha- und beta-Hopeite charakteristische hexagonale und kubische Ätzgruben, die sich unter kristallographischer Kontrolle verbreitern. Eine zuverlässige Beschreibung der Oberfächenchemie und Topologie konnte nur durch AFM und FFM Experimente erfolgen. Gleichzeitig konnte in dieser Weise die Oberflächendefektdichte und-verteilung und die Volumenauflösungsrate von a-ZPT und b-ZPT bestimmt werden. Auf einem zweiten Weg wurde eine innovative Strategie zur Herstellung von basischen Zinkphosphatpigmenten erster und zweiter Generation (d.h. NaZnPO4 1H2O und Na2ZnPO4(OH) 2H2O) mit dem Einsatz von einerseits oberflächenmodifizierten Polystyrolatices (z.B. produziert durch ein Miniemulsionspolymerisationsverfahren) und anderseits von Dendrimeren auf der Basis von Polyamidoamid (PAMAM) beschritten. Die erhaltene Zeolithstruktur (ZPO) hat in Abhängigkeit von steigendem Natrium und Wassergehalt unterschiedliche kontrollierte Morphologie: hexagonal, würfelförmig, herzförmig, sechsarmige Sterne, lanzettenförmige Dendrite, usw. Zur quantitativen Evaluierung des Polymereinbaus in der Kristallstruktur wurden carboxylierte fluoreszenzmarkierte Latices eingesetzt. Es zeigt sich, daß Polymeradditive nicht nur das Wachstum bis zu 8 µm.min-1 reduzierten. Trotzdem scheint es auch als starker Nukleationsbeschleuniger zu wirken. Dank der Koordinationschemie (d.h. Bildung eines sechszentrigen Komplexes L-COO-Zn-PO4*H2O mit Ligandenaustausch) konnten zwei einfache Mechanismen zur Wirkung von Latexpartikeln bei der ZPO Kristallisation aufgezeigt werden: (i) ein Intrakorona- und (ii) ein Extrakorona-Keimbildungsmechanismus. Weiterhin wurde die Effizienz eines Kurzzeit- und Langzeitkorrosionschutzes durch maßgeschneiderte ZPO/ZPT Pigmente und kontrollierte Freisetzung von Phosphationen in zwei Näherungen des Auslösungsgleichgewichts abgeschätzt: (i) durch eine Auswaschungs-methode (thermodynamischer Prozess) und (ii) durch eine pH-Impulsmethode (kinetischer Prozess. Besonders deutlich wird der Ausflösungs-Fällungsmechanismus (d.h. der Metamorphismus). Die wesentliche Rolle den Natriumionen bei der Korrosionshemmung wird durch ein passendes zusammensetzungsabhängiges Auflösungsmodell (ZAAM) beschrieben, das mit dem Befund des Salzsprühteste und der Feuchtigkeitskammertests konsistent ist. Schließlich zeigt diese Arbeit das herausragende Potential funktionalisierter Latices (Polymer) bei der kontrollierten Mineralisation zur Herstellung maßgeschneiderter Zinkphosphat Materialien. Solche Hybridmaterialien werden dringend in der Entwicklung umweltfreundlicher Korrosionsschutzpigmente sowie in der Dentalmedizin benötigt.
Resumo:
The idea was to obtain nanowires in a chemical laboratory under convenient and simple conditions by employing templates. Thus it was possible to produce nanochains by interlinking of gold colloids synthesized by the two-phase-method of M. Brust with by making use of vanadiumoxide nanotubes as template. The length of the resulting nanowires is varying between 1100 nm and 200 nm with a diameter of about 16 nm. Due to a flexible linker the obtained nanowires are not completely rigid. These unique structural features could make them interesting objects for structuring and assembling in the nanoscale range. Another way to produce gold nanowires was realized by a two-step surface metallization procedure, using type I collagen fibres as a template. Gold colloids were used to label the collagen fibres by direct electrostatic interaction, followed by growth steps to enhance the size of the adsorbed colloidal gold crystals, resulting in a complete metallization of the template surface. The length of the resulting gold nanowires reaches several micrometers, with a diameter ~ 100 to 120 nm. To gain a deeper insight into the process of biomineralization the cooperative effect of self-assembled monolayers as substrate and a soluble counterpart on the nucleation and crystal growth of calcium phosphate was studied by diffusion techniques with a pH switch as initiator. As soluble component Perlucin and Nacrein were used. Both are proteins originally extracted from marine organisms, the first one from the Abalone shell and the second one from oyster pearls. Both are supposed to facilitate the calcium carbonate formation in vivo. Studies with Perlucin revealed that this protein shows a clear cooperative effect at a very low concentration with a hydrophobic surface promoting the calcium phosphate precipitation resulting in a sponge like structure of hydroxyapatite. The Perlucin molecule is very flexible and is unfolded by adsorbing to the hydrophobic surface and uncovers its active side. Hydrophilic surfaces did not have a deeper impact. Studies with Nacrein as additive have shown that the protein stabilizes octacalcium phosphate at room temperature on carboxylic self-assembled monolayer and at 34 °C on all other employed surfaces by interaction with the mineral. On the hydroxyl-, alkyl-, and amin-terminated self-assembled monolayers at room temperature the octacalcium phosphate get transformed to hydroxyapatite. Main analytical techniques which are used in this work are transmission electron microscopy, high resolution scanning electron microscopy, surface plasmon resonance spectroscopy, atomic force microscopy, Raman micro-spectroscopy and quartz crystal microbalance.
Resumo:
Several CFCC (Continuous Fiber Composite Ceramics) production processes were tested, concluding that PIP (Polymer Impregnation, or Infiltration, Pyrolysis) and CBC (Chemically Bonded Ceramics) based procedures have interesting potential applications in the construction and transportation fields, thanks to low costs to get potentially useful thermomechanical performances. Among the different processes considered during the Doctorate (from the synthesis of new preceramic polymers, to the PIP production of SiC / SiC composites) the more promising results came from the PIP process with poly-siloxanes on basalt fabrics preforms. Low processing time and costs, together with fairly good thermomechanical properties were demonstrated, even after only one or two PIP steps in nitrogen flow. In alternative, pyrolysis in vacuum was also tested, a procedure still not discussed in literature, but which could originate an interesting reduction of production costs, with only a moderate detrimental effect on the mechanical properties. The resulting CFCC is a basalt / SiCO composite that can be applied for continuous operation up to 600°C, also in oxidant environment, as TG and XRD demonstrated. The failure upon loading is generally pseudo-plastic, being interlaminar delamination the most probable rupture mechanism. . The strength depends on several different factors (microstructure, polymer curing and subsequent ceramic phase evolution, fiber pull-out, fiber strength, fiber percentage) and can only be optimized empirically. In order to be open minded in selecting the best technology, also CBC (Chemically Bonded Ceramics) matrixes were considered during this Doctorate, making some preliminary investigations on fire-resistant phosphate cements. Our results on a commercial product evidenced some interesting thermomechanical capabilities, even after thermal treatments. However the experiments showed also phase change and possible cracking and deformations even on slow drying (at 130°C) and easy rehydration upon exposure to environmental humidity.
Resumo:
Rupture forces of ligand-receptor interactions, such as proteins-proteins, proteins-cells, and cells-tissues, have been successfully measured by atomic force spectroscopy (AFS). For these measurements, the ligands and receptors were chemically modified so that they can be immobilized on the tip and on a substrate, respectively. The ligand interact the receptor when the tip approaches the substrate. This interaction can be studied by measuring rupture force upon retraction. However, this technique is not feasible for measurements involving small molecules, since they form only few H-bonds with their corresponding receptors. Modifying small molecules for immobilization on surfaces may block or change binding sites. Thus, recorded rupture forces might not reflect the full scope of the involved small ligand-receptor interactions.rnIn my thesis, a novel concept that allows measuring the rupture force of small involved ligand-receptor interactions and does not require molecular modification for immobilization was introduced. The rupture force of small ligand-receptor interaction is not directly measured but it can be determined from measurements in the presence and in the absence of the ligand. As a model system, the adenosine mono phosphate (AMP) and the aptamer that binds AMP were selected. The aptamer (receptor) is a single stranded DNA that can partially self-hybridize and form binding pockets for AMP molecules (ligands). The bonds between AMP and aptamer are provided by several H-bonds and pair stacking.rnIn the novel concept, the aptamer was split into two parts (oligo a and oligo b). One part was immobilized on the tip and the other one on the substrate. Approaching the tip to the substrate, oligo a and oligo b partially hybridized and the binding pockets were formed. After adding AMP into the buffer solution, the AMP bound in the pockets and additional H-bonds were formed. Upon retraction of the tip, the rupture force of the AMP-split aptamer complex was measured. In the presence of excess AMP, the rupture force increased by about 10 pN. rnThe dissociation constant of the AMP-split aptamer complex was measured on a single molecular level (~ 4 µM) by varying the AMP concentrations and measuring the rupture force at each concentration. Furthermore, the rupture force was amplified when more pockets were added to the split aptamer. rnIn the absence of AMP, the thermal off-rate was slightly reduced compared to that in the presence of AMP, indicating that the AMP stabilized the aptamer. The rupture forces at different loading rates did not follow the logarithmic fit which was usually used to describe the dependence of rupture forces at different loading rates of oligonucleotides. Two distinguished regimes at low and high loading rates were obtained. The two regimes were explained by a model in which the oligos located at the pockets were stretched at high loading rates. rnThe contribution of a single H-bond formed between the AMP molecule and the split aptamer was measured by reducing the binding groups of the AMP. The rupture forces reduce corresponding to the reduction of the binding groups. The phosphate group played the most important role in the formation of H-bond network between the AMP molecule and the split aptamer. rn
Experimental characterization and modelling of a servo-pneumatic system for a knee loading apparatus
Resumo:
The new knee test rig developed in University of Bologna used pneumatic cylinder as actuator system. Specific characterization and modelling about the pneumatic cylinder and the related devices are needed in better controlling the test rig. In this thesis, an experimental environment for the related device is set up with data acquisition system using Real-time Windows Target, Simulink, MatLab. Based on the experimental data, a fitted model for the pneumatic cylinder friction is found.