974 resultados para Pertussis Toxin -- pharmacology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historically, calcitonin gene-related peptide (CGRP) receptors have been divided into two classes, CGRP(1) and CGRP(2).After the cloning of calcitonin receptor-like receptor (CLR) and receptor activity-modifying proteins (RAMPs), it became clear that the CGRP(1) receptor was a complex between CLR and RAMP1. It is now apparent that the CGRP(2) receptor phenotype is the result of CGRP acting at receptors for amylin and adrenomedullin. Accordingly, the term "CGRP(2)" receptor should no longer be used, and the "CGRP(1)" receptor should be known as the "CGRP" receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historically, CGRP receptors have been classified as CGRP(1) or CGRP(2) subtypes, chiefly depending on their affinity for the antagonist CGRP(8-37). It has been shown that the complex between calcitonin receptor-like receptor (CRLR or CL) and receptor activity modifying protein (RAMP) 1 provides a molecular correlate for the CGRP(1) receptor; however this does not explain the range of affinities seen for CGRP(8-37) in isolated tissues. It is suggested that these may largely be explained by a combination of methodological factors and CGRP-responsive receptors generated by CL and RAMP2 or RAMP3 and complexes of RAMPs with the calcitonin receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adrenomedullin (AM) has two specific receptors formed by the calcitonin-receptor-like receptor (CL) and receptor activity-modifying protein (RAMP) 2 or 3. These are known as AM1 and AM2 receptors, respectively. In addition, AM has appreciable affinity for the CGRP1 receptor, composed of CL and RAMP1. The AM1 receptor has a high degree of selectivity for AM over CGRP and other peptides, and AM 22-52 is an effective antagonist at this receptor. By contrast, the AM2 receptor shows less specificity for AM, having appreciable affinity for βCGRP. Here, CGRP8-37 is either equipotent or more effective as an antagonist than AM22-52, depending on the species from which the receptor components are derived. Thus, under the appropriate circumstances it seems that βCGRP might be able to activate both CGRP 1 and AM2 receptors and AM could activate both AM 1 and AM2 receptors as well as CGRP1 receptors. Current peptide antagonists are not sufficiently selective to discriminate between these three receptors. The CGRP-selectivity of RAMP1 and RAMP3 may be conferred by a putative disulfide bond from the N-terminus to the middle of the extracellular domain of these molecules. This is not present in RAMP2. Copyright © 2004 Humana Press Inc. All rights of any nature whatsoever reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calcitonin family of peptides comprises calcitonin, amylin two calcitonin gene-related peptides (CGRPs), and adrenomedullin. The first calcitonin receptor was cloned in 1991. Its pharmacology is complicated by the existence of several splice variants. The receptors for the other members the family are made up of subunits. The calcitonin-like receptor (CL receptor) requires a single transmembrane domain protein, termed receptor activity modifying protein, RAMP1, to function as a CGRP receptor. RAMP2 and -3 enable the same CL receptor to behave as an adrenomedullin receptor. Although the calcitonin receptor does not require RAMP to bind and respond to calcitonin, it can associate with the RAMPs, resulting in a series of receptors that typically have high affinity for amylin and varied affinity for CGRP. This review aims to reconcile what is observed when the receptors are reconstituted in vitro with the properties they show in native cells and tissues. Experimental conditions must be rigorously controlled because different degrees of protein expression may markedly modify pharmacology in such a complex situation. Recommendations, which follow International Union of Pharmacology guidelines, are made for the nomenclature of these multimeric receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Routine cell line maintenance involves removal of waste products and replenishment of nutrients via replacement of cell culture media. Here, we report that routine maintenance of three discrete cell lines (HSB-CCRF-2 and Jurkat T cells, and phaeo-chromocytoma PC12 cells) decreases the principal cellular antioxidant, glutathione, by up to 42% in HSB-CCRF-2 cells between 60 and 120 min after media replenishment. However, cellular glutathione levels returned to baseline within 5 h after passage. The decrease in glutathione was associated with modulation of the response of Jurkat T cells to apoptotic and mitogenic signals. Methotrexate-induced apoptosis over 16 h, measured as accumulation of apoptotic nucleoids, was decreased from 22 to 17% if cells were exposed to cytotoxic agent 30 min after passage compared with cells exposed to MTX in the absence of passage. In contrast, interleukin-2 (IL-2) production over 24 h in response to the toxin phytohaemagglutinin (PHA), was increased by 34% if cells were challenged 2 h after passage compared with PHA treatment in the absence of passage. This research highlights the presence of a window of time after cell passage of non-adherent cells that may lead to over- or under-estimation of subsequent cell responses to toxins, which is dependent on cellular antioxidant capacity or redox state. © 2007 Elsevier B.V. All rights reserved.