933 resultados para Peripheral Neuropathy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The incidence of cardiovascular diseases increases after menopause, and soy consumption is suggested to inhibit disease development. Objective: The objective was to identify biomarkers of response to a dietary supplementation with an isoflavone extract in postmenopausal women by proteome analysis of peripheral blood mononuclear cells. Design: The study with healthy postmenopausal woman was performed in a placebo-controlled sequential design. Peripheral mononuclear blood cells were collected from 10 volunteers after 8 wk of receiving daily 2 placebo cereal bars and after a subsequent 8 wk of intervention with 2 cereal bars each providing 25 mg of isoflavones. The proteome of the cells was visualized after 2-dimensional gel electrophoresis, and peptide mass fingerprinting served to identify proteins that by the intervention displayed altered protein concentrations. Results: Twenty-nine proteins were identified that showed significantly altered expression in the mononuclear blood cells under the soy-isoflavone intervention, including a variety of proteins involved in an antiinflammatory response. Heat shock protein 70 or a lymphocyte-specific protein phosphatase and proteins that promote increased fibrinolysis, such as a-enolase, were found at increased intensities, whereas those that mediate adhesion, migration, and proliferation of vascular smooth muscle cells, such as galectin-1, were found at reduced intensities after soy extract consumption. Conclusion: Protcome analysis identified in vivo markers that respond to a dietary intervention with isoflavone-enriched soy extract in postmenopausal women. The nature of the proteins identified suggests that soy isoflavones may increase the anti inflammatory response in blood mononuclear cells that might contribute to the atherosclerosis-preventive activities of a soy-rich diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The perceived displacement of motion-defined contours in peripheral vision was examined in four experiments. In Experiment 1, in line with Ramachandran and Anstis' finding [Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19, 611-616], the border between a field of drifting dots and a static dot pattern was apparently displaced in the same direction as the movement of the dots. When a uniform dark area was substituted for the static dots, a similar displacement was found, but this was smaller and statistically insignificant. In Experiment 2, the border between two fields of dots moving in opposite directions was displaced in the direction of motion of the dots in the more eccentric field, so that the location of a boundary defined by a diverging pattern is perceived as more eccentric, and that defined by a converging as less eccentric. Two explanations for this effect (that the displacement reflects a greater weight given to the more eccentric motion, or that the region containing stronger centripetal motion components expands perceptually into that containing centrifugal motion) were tested in Experiment 3, by varying the velocity of the more eccentric region. The results favoured the explanation based on the expansion of an area in centripetal motion. Experiment 4 showed that the difference in perceived location was unlikely to be due to differences in the discriminability of contours in diverging and converging pattems, and confirmed that this effect is due to a difference between centripetal and centrifugal motion rather than motion components in other directions. Our result provides new evidence for a bias towards centripetal motion in human vision, and suggests that the direction of motion-induced displacement of edges is not always in the direction of an adjacent moving pattern. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot 3.75H(2)O (1), [(CuL2)(3)(mu(3)-OH)](ClO4)(2) (2) and [(CuL3)(3)(mu(3)-OH)](BF4)(2)center dot 0.5CH(3)CN (3) have been synthesized from three tridentate Schiff bases HL1, HL2, and HL3 (HL1 = 2-[(2-amino-ethylimino)-methyl]-phenol, HL2 = 2-[(2-methylamino-ethylimino)-methyl]-phenol and HL3 = 2-[1-(2-dimethylamino-ethylimino)-ethyl]-phenol). The complexes are characterized by single-crystal X-ray diffraction analyses, IR, UV-vis and EPR spectroscopy, and variable-temperature magnetic measurements. All the compounds contain a partial cubane [Cu3O4] core consisting of the trinuclear unit [(CuL)(3)(mu(3)-OH)](2+) together with perchlorate or fluoroborate anions. In each of the complexes, the three copper atoms are five-coordinated with a distorted square-pyramidal geometry except in complex 1, in which one of the Cu-II ions of the trinuclear unit is six-coordinate being in addition weakly coordinated to one of the perchlorate anions. Variable-temperature magnetic measurements and EPR spectra indicate an antiferromagnetic exchange coupling between the CuII ions of complexes 1 and 2, while this turned out to be ferromagnetic for complex 3. Experimental values have been fitted according to an isotropic exchange Hamiltonian. Calculations based on Density Functional Theory have also been performed in order to estimate the exchange coupling constants in these three complexes. Both sets of values indicate similar trends and specially calculated J values establish a magneto-structural correlation between them and the Cu-O-Cu bond angle, in that the coupling is more ferromagnetic for smaller bond angle values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present an economical and versatile platform for developing motor control and sensory feedback of a prosthetic hand via in vitro mammalian peripheral nerve activity. In this study, closed-loop control of the grasp function of the prosthetic hand was achieved by stimulation of a peripheral nerve preparation in response to slip sensor data from a robotic hand, forming a rudimentary reflex action. The single degree of freedom grasp was triggered by single unit activity from motor and sensory fibers as a result of stimulation. The work presented here provides a novel, reproducible, economic, and robust platform for experimenting with neural control of prosthetic devices before attempting in vivo implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors demonstrate four real-time reactive responses to movement in everyday scenes using an active head/eye platform. They first describe the design and realization of a high-bandwidth four-degree-of-freedom head/eye platform and visual feedback loop for the exploration of motion processing within active vision. The vision system divides processing into two scales and two broad functions. At a coarse, quasi-peripheral scale, detection and segmentation of new motion occurs across the whole image, and at fine scale, tracking of already detected motion takes place within a foveal region. Several simple coarse scale motion sensors which run concurrently at 25 Hz with latencies around 100 ms are detailed. The use of these sensors are discussed to drive the following real-time responses: (1) head/eye saccades to moving regions of interest; (2) a panic response to looming motion; (3) an opto-kinetic response to continuous motion across the image and (4) smooth pursuit of a moving target using motion alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synaptic vesicle glycoprotein (SV)2A is a transmembrane protein found in secretory vesicles and is critical for Ca2+-dependent exocytosis in central neurons, although its mechanism of action remains uncertain. Previous studies have proposed, variously, a role of SV2 in the maintenance and formation of the readily releasable pool (RRP) or in the regulation of Ca2+ responsiveness of primed vesicles. Such previous studies have typically used genetic approaches to ablate SV2 levels; here, we used a strategy involving small interference RNA (siRNA) injection to knockdown solely presynaptic SV2A levels in rat superior cervical ganglion (SCG) neuron synapses. Moreover, we investigated the effects of SV2A knockdown on voltage-dependent Ca2+ channel (VDCC) function in SCG neurons. Thus, we extended the studies of SV2A mechanisms by investigating the effects on vesicular transmitter release and VDCC function in peripheral sympathetic neurons. We first demonstrated an siRNA-mediated SV2A knockdown. We showed that this SV2A knockdown markedly affected presynaptic function, causing an attenuated RRP size, increased paired-pulse depression and delayed RRP recovery after stimulus-dependent depletion. We further demonstrated that the SV2A–siRNA-mediated effects on vesicular release were accompanied by a reduction in VDCC current density in isolated SCG neurons. Together, our data showed that SV2A is required for correct transmitter release at sympathetic neurons. Mechanistically, we demonstrated that presynaptic SV2A: (i) acted to direct normal synaptic transmission by maintaining RRP size, (ii) had a facilitatory role in recovery from synaptic depression, and that (iii) SV2A deficits were associated with aberrant Ca2+ current density, which may contribute to the secretory phenotype in sympathetic peripheral neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural crest-derived stem cells (NCSCs) from the embryonic peripheral nervous system (PNS) can be reprogrammed in neurosphere (NS) culture to rNCSCs that produce central nervous system (CNS) progeny, including myelinating oligodendrocytes. Using global gene expression analysis we now demonstrate that rNCSCs completely lose their previous PNS characteristics and acquire the identity of neural stem cells derived from embryonic spinal cord. Reprogramming proceeds rapidly and results in a homogenous population of Olig2-, Sox3-, and Lex-positive CNS stem cells. Low-level expression of pluripotency inducing genes Oct4, Nanog, and Klf4 argues against a transient pluripotent state during reprogramming. The acquisition of CNS properties is prevented in the presence of BMP4 (BMP NCSCs) as shown by marker gene expression and the potential to produce PNS neurons and glia. In addition, genes characteristic for mesenchymal and perivascular progenitors are expressed, which suggests that BMP NCSCs are directed toward a pericyte progenitor/mesenchymal stem cell (MSC) fate. Adult NCSCs from mouse palate, an easily accessible source of adult NCSCs, display strikingly similar properties. They do not generate cells with CNS characteristics but lose the neural crest markers Sox10 and p75 and produce MSC-like cells. These findings show that embryonic NCSCs acquire a full CNS identity in NS culture. In contrast, MSC-like cells are generated from BMP NCSCs and pNCSCs, which reveals that postmigratory NCSCs are a source for MSC-like cells up to the adult stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The OTOF gene encoding otoferlin is associated with auditory neuropathy (AN), a type of non-syndromic deafness. We investigated the contribution of OTOF mutations to AN and to non-syndromic recessive deafness in Brazil. A test for the Q829X mutation was carried out on a sample of 342 unrelated individuals with non-syndromic hearing loss, but none presented this mutation. We selected 48 cases suggestive of autosomal recessive inheritance, plus four familial and seven isolated cases of AN, for genotyping of five microsatellite markers linked to the OTOF gene. The haplotype analysis showed compatibility with linkage in 11 families (including the four families with AN). Samples of the 11 probands from these families and from seven isolated cases of AN were selected for an exon-by-exon screening for mutations in the OTOF gene. Ten different pathogenic variants were detected, among which six are novel. Among the 52 pedigrees with autosomal recessive inheritance (including four familial cases of AN), mutations were identified in 4 (7.7%). Among the 11 probands with AN, seven had at least one pathogenic mutation in the OTOF gene. Mutations in the OTOF gene are frequent causes of AN in Brazil and our results confirm that they are spread worldwide. Journal of Human Genetics (2009) 54, 382-385; doi: 10.1038/jhg.2009.45; published online 22 May 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the favorable treatment of cranial nerve neuropathology in adulthood, some cases are resistant to therapy leading to permanent functional impairments In many cases, suitable treatment is problematic as the therapeutic target remains unknown Basic fibroblast growth factor (bFGF, FGF 2) is involved in neuronal maintenance and wound repair following nervous system lesions It is one of few neurotrophic molecules acting in autocrine, paracrine and intracrine fashions depending upon specific circumstances Peripheral cranial somatic motor neurons, i e hypoglossal (XII) neurons, may offer a unique opportunity to study cellular FGF 2 mechanisms as the molecule is present in the cytoplasm of neurons and in the nuclei of astrocytes of the central nervous system FGF-2 may trigger differential actions during development, maintenance and lesion of XII neurons because axotomy of those cells leads to cell death during neonatal ages, but not in adult life Moreover, the modulatory effects of astroglial FGF 2 and the Ca+2 binding protein S100 beta have been postulated in paracrine mechanisms after neuronal lesions In our study, adult Wistar rats received a unilateral crush or transection (with amputation of stumps) of XII nerve, and were sacrificed after 72 h or 11 days Brains were processed for immunohistochemical localization of neurofilaments (NF), with or without counterstaining for Nissl substance, ghat fibrillary acidic protein (GFAP, as a marker of astrocytes), S100 beta and FGF-2 The number of Nissl positive neurons of axotomized XII nucleus did not differ from controls The NF immunoreactivity increased in the perikarya and decreased in the neuropil of axotomized XII neurons 11 days after nerve crush or transection An astrocytic reaction was seen in the ipsilateral XII nucleus of the crushed or transected animals 72 h and 11 days after the surgery The nerve lesions did not change the number of FGF-2 neurons in the ipsilateral XII nucleus, however, the nerve transection increased the number of FGF-2 ghat profiles by 72 h and 11 days Microdensitometric image analysis revealed a short lasting decrease in the intensity of FGF 2 immunoreactivity in axotomized XII neurons by 72 h after nerve crush or transection and also an elevation of FGF-2 in the ipsilateral of ghat nuclei by 72h and 11 days after the two lesions S100 beta decreased in astrocytes of 11-day transected XII nucleus The two-color immunoperoxidase for the simultaneous detection of the GFAP/FGF-2 indicated FGF-2 upregulation in the nuclei of reactive astrocytes of the lesioned XII nucleus Astroglial FGF-2 may exert paracrine trophic actions in mature axotomized XII neurons and might represent a therapeutic target for neuroprotection in peripheral nerve pathology (C) 2009 Elsevier GmbH All rights reserved