926 resultados para Peptide nucleic acid
Resumo:
During the Netherlands Indian Ocean Project (NIOP, 1992-1993) sediment community oxygen consumption (SCOC) was measured on two continental margins in the Indian Ocean with different productivity: the productive upwelling region off Yemen-Somalia and the supposedly less productive Kenyan margin, which lacks upwelling. The two margins also differ in terms of river input (Kenya) and the more severe oxygen minimum in the Arabian Sea. Simultaneously with SCOC, distributions of benthic biomass and phytodetritus were studied. Our expectation was that benthic processes in the upwelling margin of the Arabian Sea would be relatively enhanced as a result of the higher productivity. On the Kenyan margin, SCOC (range 1-36 mmol/m**2/d) showed a clear decrease with increasing water depth, and little temporal variation was detected between June and December. Highest SCOC values of this study were recorded at 50 m depth off Kenya, with a maximum of 36 mmol/m**2/d in the northernmost part. On the margin off Yemen-Somalia, SCOC was on average lower and showed little downslope variation, 1.8-5.7 mmol/m**2/d, notably during upwelling, when the zone between 70 and 1700 m was covered with low O2 water (10-50 µM). After cessation of upwelling, SCOC at 60 m depth off Yemen increased from 5.7 to 17.6 mmol/m**2/d concurrently with an increase of the near-bottom O2 concentration (from 11 to 153 µM), suggesting a close coupling between SCOC and O2 concentration. This was demonstrated in shipboard cores in which the O2 concentration in the overlying water was raised after the cores were first incubated under in situ conditions (17 µM O2). This induced an immediate and pronounced increase of SCOC. Conversely, at deeper stations permanently within the oxygen minimum zone (OMZ), SCOC showed little variation between monsoon periods. Hence, organic carbon degradation in sediments on a large part of the Yemen slope appears hampered by the oxygen deficiency of the overlying water. Macrofauna biomass and the pooled biomass of smaller organisms, estimated by the nucleic acid content of the sediment, had comparable ranges in the two areas in spite of more severe suboxic conditions in the Arabian Sea. At the Kenyan shelf, benthic fauna (macro- and meiofauna) largely followed the spatial pattern of SCOC, i.e. high values on the northern shelf-upper slope and a downslope decrease. On the Yemen-Somali margin the macrofauna distribution was more erratic. Nucleic acids displayed no clear downslope trend on either margin owing to depressed values in the OMZ, perhaps because of adverse effects of low O2 on small organisms (meiofauna and microbes). Phytodetritus distributions were different on the two margins. Whereas pigment levels decreased downslope along the Kenya margin, the upper slope off Yemen (800 m) had a distinct accumulation of mainly refractory carotenoid pigments, suggesting preservation under low 02. Because the accumulations of Corg and pigments on the Yemen slope overlap only partly, we infer a selective deposition and preservation of labile particles on the upper slope, whereas refractory material undergoes further transport downslope.
Resumo:
In temperate, subpolar and polar marine systems, the classical perception that bacteria are carbon limited by end of winter and respond in activity and abundance to the production of new carbon during the diatom spring bloom and post bloom. Contrary to this view, we here document an strong increase in bacterial abundance and activity (latter measured by increasing high nuclei acid (HNA) to low nuclei acid (LNA) bacteria ratio) during the winter-spring transition, where phytoplankton smaller than 10 µm dominate. Further DNA-virus were enumerated and revealed the virus to bacteria ratio (VBR) to be decreasing during winter-spring transition, indicating that the virus did not increase in number accordingly to bacteria. During repeated visits to stations in the deep Icelandic and the Norwegian Basins and the shallow Shetland Shelf (26 March to 29 April 2012), we investigated the abundance of bacteria and the succession of HNA:LNA bacteria and VBR. Water samples were collected from CTD rosette .10 L Niskin bottles and fixed in glutaraldehyde (final conc. 5%), flash frozen in liquid Nitrogen and stored at -80°C until analysis.
Resumo:
Subtropical oceanic gyres are the most extensive biomes on Earth where SAR11 and Prochlorococcus bacterioplankton numerically dominate the surface waters depleted in inorganic macronutrients as well as in dissolved organic matter. In such nutrient poor conditions bacterioplankton could become photoheterotrophic. We assessed the photoheterotrophy of the key microbial taxa in the North Atlantic oligotrophic gyre and adjacent regions. The experimental work was performed on board the Royal Research Ship James Cook (cruise no. JC53, October-November 2010) as part of the Atlantic Meridional Transect programme, and on board the Royal Research Ship Discovery (cruise no. D369, August-September 2011). At each station, samples were collected from 20m depth with a sampling rosette of 20-l Niskin bottles mounted on aconductivity-temperature-depth profiler. Samples were collected in 1 l thermos flasks (washed with10% v/v HCl) in the dark and processed immediately. Depth of 20m was chosen because it represents the mixed layer and it was the shallowest depth unaffected by the ship's movement, including thrusting, that could artificially affect microbial metabolism in nutrient-depleted stratified surfacewaters. Molecular identification of flow-sorted cells CARD-FISH was performed on flow-sorted cells to identify the groups for which uptake rates were measured. High nucleic acid-containing bacteria, based on SYBR Green DNA staining, that had virtually undetectable chlorophyll autofluorescence, were phylogenetically affiliated with Prochlorococcus,in agreement with our previously reported results (Zubkov et al., 2007; doi:10.1111/j.1462-2920.2007.01324.x).
Resumo:
A highly sensitive assay combining immunomagnetic enrichment with multiparameter flow cytometric and immunocytochemical analysis has been developed to detect, enumerate, and characterize carcinoma cells in the blood. The assay can detect one epithelial cell or less in 1 ml of blood. Peripheral blood (10–20 ml) from 30 patients with carcinoma of the breast, from 3 patients with prostate cancer, and from 13 controls was examined by flow cytometry for the presence of circulating epithelial cells defined as nucleic acid+, CD45−, and cytokeratin+. Highly significant differences in the number of circulating epithelial cells were found between normal controls and patients with cancer including 17 with organ-confined disease. To determine whether the circulating epithelial cells in the cancer patients were neoplastic cells, cytospin preparations were made after immunomagnetic enrichment and were analyzed. Epithelial cells from patients with breast cancer generally stained with mAbs against cytokeratin and 3 of 5 for mucin-1. In contrast, no cells that stained for these antigens were observed in the blood from normal controls. The morphology of the stained cells was consistent with that of neoplastic cells. Of 8 patients with breast cancer followed for 1–10 months, there was a good correlation between changes in the level of tumor cells in the blood with both treatment with chemotherapy and clinical status. The present assay may be helpful in early detection, in monitoring disease, and in prognostication.
Resumo:
Varicella–zoster virus (VZV) is a human herpesvirus that causes varicella (chicken pox) as a primary infection and, after a variable period of latency in trigeminal and dorsal root ganglia, reactivates to cause herpes zoster (shingles). Both of these conditions may be followed by a variety of neurological complications, especially in immunocompromised individuals such as those with human immunodeficiency virus (HIV) infection. There have been a number of conflicting reports regarding the cellular location of latent VZV within human ganglia. To address this controversy we examined fixed wax-embedded trigeminal ganglia from 30 individuals obtained at autopsy, including 11 with HIV infection, 2 neonates, and 17 immunocompetent individuals, for the presence of latent VZV. Polymerase chain reaction (PCR), in situ hybridization, and PCR in situ amplification techniques with oligonucleotide probes and primer sequences to VZV genes 18, 21, 29, and 63 were used. VZV DNA in ganglia was detected in 15 individuals by using PCR alone, and in 12 individuals (6 normal non-HIV and 6 positive HIV individuals, but not neonatal ganglia) by using PCR in situ amplification. When in situ hybridization alone was used, 5 HIV-positive individuals and only 1 non-HIV individual showed VZV nucleic acid signals in ganglia. In all of the VZV-positive ganglia examined, VZV nucleic acid was detected in neuronal nuclei. Only occasional nonneuronal cells contained VZV DNA. We conclude from these studies that the neuron is the predominant site of latent VZV in human trigeminal ganglia.
Resumo:
A dynamic capsid is critical to the events that shape the viral life cycle; events such as cell attachment, cell entry, and nucleic acid release demand a highly mobile viral surface. Protein mass mapping of the common cold virus, human rhinovirus 14 (HRV14), revealed both viral structural dynamics and the inhibition of such dynamics with an antiviral agent, WIN 52084. Viral capsid digestion fragments resulting from proteolytic time-course experiments provided structural information in good agreement with the HRV14 three-dimensional crystal structure. As expected, initial digestion fragments included peptides from the capsid protein VP1. This observation was expected because VP1 is the most external viral protein. Initial digestion fragments also included peptides belonging to VP4, the most internal capsid protein. The mass spectral results together with x-ray crystallography data provide information consistent with a “breathing” model of the viral capsid. Whereas the crystal structure of HRV14 shows VP4 to be the most internal capsid protein, mass spectral results show VP4 fragments to be among the first digestion fragments observed. Taken together this information demonstrates that VP4 is transiently exposed to the viral surface via viral breathing. Comparative digests of HRV14 in the presence and absence of WIN 52084 revealed a dramatic inhibition of digestion. These results indicate that the binding of the antiviral agent not only causes local conformational changes in the drug binding pocket but actually stabilizes the entire viral capsid against enzymatic degradation. Viral capsid mass mapping provides a fast and sensitive method for probing viral structural dynamics as well as providing a means for investigating antiviral drug efficacy.
Resumo:
Ancient septicemic plague epidemics were reported to have killed millions of people for 2 millenniums. However, confident diagnosis of ancient septicemia solely on the basis of historical clinical observations is not possible. The lack of suitable infected material has prevented direct demonstration of ancient septicemia; thus, the history of most infections such as plague remains hypothetical. The durability of dental pulp, together with its natural sterility, makes it a suitable material on which to base such research. We hypothesized that it would be a lasting refuge for Yersinia pestis, the plague agent. DNA extracts were made from the dental pulp of 12 unerupted teeth extracted from skeletons excavated from 16th and 18th century French graves of persons thought to have died of plague (“plague teeth”) and from 7 ancient negative control teeth. PCRs incorporating ancient DNA extracts and primers specific for the human β-globin gene demonstrated the absence of inhibitors in these preparations. The incorporation of primers specific for Y. pestis rpoB (the RNA polymerase β-subunit-encoding gene) and the recognized virulence-associated pla (the plasminogen activator-encoding gene) repeatedly yielded products that had a nucleotide sequence indistinguishable from that of modern day isolates of the bacterium. The specific pla sequence was obtained from 6 of 12 plague skeleton teeth but 0 of 7 negative controls (P < 0.034, Fisher exact test). A nucleic acid-based confirmation of ancient plague was achieved for historically identified victims, and we have confirmed the presence of the disease at the end of 16th century in France. Dental pulp is an attractive target in the quest to determine the etiology of septicemic illnesses detected in ancient corpses. Molecular techniques could be applied to this material to resolve historical outbreaks.
Resumo:
Editing of RNA changes the read-out of information from DNA by altering the nucleotide sequence of a transcript. One type of RNA editing found in all metazoans uses double-stranded RNA (dsRNA) as a substrate and results in the deamination of adenosine to give inosine, which is translated as guanosine. Editing thus allows variant proteins to be produced from a single pre-mRNA. A mechanism by which dsRNA substrates form is through pairing of intronic and exonic sequences before the removal of noncoding sequences by splicing. Here we report that the RNA editing enzyme, human dsRNA adenosine deaminase (DRADA1, or ADAR1) contains a domain (Zα) that binds specifically to the left-handed Z-DNA conformation with high affinity (KD = 4 nM). As formation of Z-DNA in vivo occurs 5′ to, or behind, a moving RNA polymerase during transcription, recognition of Z-DNA by DRADA1 provides a plausible mechanism by which DRADA1 can be targeted to a nascent RNA so that editing occurs before splicing. Analysis of sequences related to Zα has allowed identification of motifs common to this class of nucleic acid binding domain.
Resumo:
LINEs are transposable elements, widely distributed among eukaryotes, that move via reverse transcription of an RNA intermediate. Mammalian LINEs have two ORFs (ORF1 and ORF2). The proteins encoded by these ORFs play important roles in the retrotransposition process. Although the predicted amino acid sequence of ORF1 is not closely related to any known proteins, it is highly basic; thus, it has long been hypothesized that ORF1 protein functions to bind LINE-1 (L1) RNA during retrotransposition. Cofractionation of ORF1 protein and L1 RNA in extracts from both mouse and human embryonal carcinoma cells indicated that ORF1 protein binds L1 RNA, forming a ribonucleoprotein particle. Based on UV crosslinking and electrophoretic mobility-shift assays using purified components, we demonstrate here that the ORF1 protein encoded by mouse L1 binds nucleic acids with a strong preference for RNA and other single-stranded nucleic acids. Furthermore, multiple copies of ORF1 protein appear to bind single-stranded nucleic acid in a manner suggesting positive cooperativity; such binding characteristics are likely to be facilitated by the protein–protein interactions detected among molecules of ORF1 polypeptide by coimmunoprecipitation. These observations are consistent with the formation of ribonucleoprotein particles containing L1 RNA and ORF1 protein and provide additional evidence for the role of ORF1 protein during retrotransposition of L1.
Resumo:
Peptide nucleic acids (PNA) are mimics with normal bases connected to a pseudopeptide chain that obey Watson–Crick rules to form stable duplexes with itself and natural nucleic acids. This has focused attention on PNA as therapeutic or diagnostic reagents. Duplexes formed with PNA mirror some but not all properties of DNA. One fascinating aspect of PNA biochemistry is their reaction with enzymes. Here we show an enzyme reaction that operates effectively on a PNA/DNA hybrid duplex. A DNA oligonucleotide containing a cis, syn-thymine [2+2] dimer forms a stable duplex with PNA. The hybrid duplex is recognized by photolyase, and irradiation of the complex leads to the repair of the thymine dimer. This finding provides insight into the enzyme mechanism and provides a means for the selective repair of thymine photodimers.
Resumo:
Nuclease resistance and RNA affinity are key criteria in the search for optimal antisense nucleic acid modifications, but the origins of the various levels of resistance to nuclease degradation conferred by chemical modification of DNA and RNA are currently not understood. The 2′-O-aminopropyl (AP)-RNA modification displays the highest nuclease resistance among all phosphodiester-based analogues and its RNA binding affinity surpasses that of phosphorothioate DNA by 1°C per modified residue. We found that oligodeoxynucleotides containing AP-RNA residues at their 3′ ends competitively inhibit the degradation of single-stranded DNA by the Escherichia coli Klenow fragment (KF) 3′-5′ exonuclease and snake venom phosphodiesterase. To shed light on the origins of nuclease resistance brought about by the AP modification, we determined the crystal structure of an A-form DNA duplex with AP-RNA modifications at 1.6-Å resolution. In addition, the crystal structures of complexes between short DNA fragments carrying AP-RNA modifications and wild-type KF were determined at resolutions between 2.2 and 3.0 Å and compared with the structure of the complex between oligo(dT) and the D355A/E357A KF mutant. The structural models suggest that interference of the positively charged 2′-O-substituent with the metal ion binding site B of the exonuclease allows AP-RNA to effectively slow down degradation.