903 resultados para Pedestrian crash
Resumo:
Red light running (RLR) is a problem in the US that has resulted in 165,000 injuries and 907 fatalities annually. In Iowa, RLR-related crashes make up 24.5 percent of all crashes and account for 31.7 percent of fatal and major injury crashes at signalized intersections. RLR crashes are a safety concern due to the increased likelihood of injury compared to other types of crashes. One tool used to combat red light running is automated enforcement in the form of RLR cameras. Automated enforcement, while effective, is often controversial. Cedar Rapids, Iowa installed RLR and speeding cameras at seven intersections across the city. The intersections were chosen based on crash rates and whether cameras could feasibly be placed at the intersection approaches. The cameras were placed starting in February 2010 with the last one becoming operational in December 2010. An analysis of the effect of the cameras on safety at these intersections was determined prudent in helping to justify the installation and effectiveness of the cameras. The objective of this research was to assess the safety effectiveness of the RLR program that has been implemented in Cedar Rapids. This was accomplished by analyzing data to determine changes in the following metrics: Reductions in red light violation rates based on overall changes, time of day changes, and changes by lane Effectiveness of the cameras over time Time in which those running the red light enter the intersection Changes in the average headway between vehicles entering the intersection
Resumo:
Traffic safety engineers are among the early adopters of Bayesian statistical tools for analyzing crash data. As in many other areas of application, empirical Bayes methods were their first choice, perhaps because they represent an intuitively appealing, yet relatively easy to implement alternative to purely classical approaches. With the enormous progress in numerical methods made in recent years and with the availability of free, easy to use software that permits implementing a fully Bayesian approach, however, there is now ample justification to progress towards fully Bayesian analyses of crash data. The fully Bayesian approach, in particular as implemented via multi-level hierarchical models, has many advantages over the empirical Bayes approach. In a full Bayesian analysis, prior information and all available data are seamlessly integrated into posterior distributions on which practitioners can base their inferences. All uncertainties are thus accounted for in the analyses and there is no need to pre-process data to obtain Safety Performance Functions and other such prior estimates of the effect of covariates on the outcome of interest. In this slight, fully Bayesian methods may well be less costly to implement and may result in safety estimates with more realistic standard errors. In this manuscript, we present the full Bayesian approach to analyzing traffic safety data and focus on highlighting the differences between the empirical Bayes and the full Bayes approaches. We use an illustrative example to discuss a step-by-step Bayesian analysis of the data and to show some of the types of inferences that are possible within the full Bayesian framework.
Resumo:
Traffic safety engineers are among the early adopters of Bayesian statistical tools for analyzing crash data. As in many other areas of application, empirical Bayes methods were their first choice, perhaps because they represent an intuitively appealing, yet relatively easy to implement alternative to purely classical approaches. With the enormous progress in numerical methods made in recent years and with the availability of free, easy to use software that permits implementing a fully Bayesian approach, however, there is now ample justification to progress towards fully Bayesian analyses of crash data. The fully Bayesian approach, in particular as implemented via multi-level hierarchical models, has many advantages over the empirical Bayes approach. In a full Bayesian analysis, prior information and all available data are seamlessly integrated into posterior distributions on which practitioners can base their inferences. All uncertainties are thus accounted for in the analyses and there is no need to pre-process data to obtain Safety Performance Functions and other such prior estimates of the effect of covariates on the outcome of interest. In this light, fully Bayesian methods may well be less costly to implement and may result in safety estimates with more realistic standard errors. In this manuscript, we present the full Bayesian approach to analyzing traffic safety data and focus on highlighting the differences between the empirical Bayes and the full Bayes approaches. We use an illustrative example to discuss a step-by-step Bayesian analysis of the data and to show some of the types of inferences that are possible within the full Bayesian framework.
Resumo:
En aquest article es conceptualitza la confusió en termes d'incertesa, considerant posteriorment com intervé en el procés de formació de creences i en la presa de decisions d'inversió i distingint tres tipus d'estratègies inversores, la diversificació, la concentració en empreses confiant en el pla empresarial i en la capacitat de gestió i, finalment, el seguidisme, referent a l'estratègia basada en confiar en tercers (rumors, notícies, experts, gurus ...). D'acord amb aquesta anàlisi, s'estableix la influència de la informació i la confusió en formació de les bombolles financeres i s'il·lustra amb l'exemple de la bombolla immobiliària i el crac borsari de 2008 a Espanya.
Resumo:
Les investigations dans le milieu des accidents de la circulation sont très complexes. Elles nécessitent la mise en oeuvre d'un grand nombre de spécialités venant de domaines très différents. Si certains de ces domaines sont déjà bien exploités, d'autres demeurent encore incomplets et il arrive de nos jours d'observer des lacunes dans la pratique, auxquelles il est primordial de remédier.Ce travail de thèse, intitulé « l'exploitation des traces dans les accidents de la circulation », est issu d'une réflexion interdisciplinaire entre de multiples aspects des sciences forensiques. Il s'agit principalement d'une recherche ayant pour objectif de démontrer les avantages découlant d'une synergie entre les microtraces et l'étude de la dynamique d'un accident. Afin de donner une dimension très opérationnelle à ce travail, l'ensemble des démarches entreprises a été axé de manière à optimiser l'activité des premiers intervenants sur les lieux.Après une partie introductive et ayant trait au projet de recherche, traitant des aspects théoriques de la reconstruction d'une scène d'accident, le lecteur est invité à prendre connaissance de cinq chapitres pratiques, abordés selon la doctrine « du général au particulier ». La première étape de cette partie pratique concerne l'étude de la morphologie des traces. Des séquences d'examens sont proposées pour améliorer l'interprétation des contacts entre véhicules et obstacles impliqués dans un accident. Les mécanismes de transfert des traces de peinture sont ensuite étudiés et une série de tests en laboratoire est pratiquée sur des pièces de carrosseries automobiles. Différents paramètres sont ainsi testés afin de comprendre leur impact sur la fragilité d'un système de peinture. Par la suite, une liste de cas traités (crash-tests et cas réels), apportant des informations intéressantes sur le traitement d'une affaire et permettant de confirmer les résultats obtenus est effectuée. Il s'ensuit un recueil de traces, issu de l'expérience pratique acquise et ayant pour but d'aiguiller la recherche et le prélèvement sur les lieux. Finalement, la problématique d'une banque de données « accident », permettant une gestion optimale des traces récoltées est abordée.---The investigations of traffic accidents are very complex. They require the implementation of a large number of specialties coming from very different domains. If some of these domains are already well exploited, others remain still incomplete and it happens nowadays to observe gaps in the practice, which it is essential to remedy. This thesis, entitled "the exploitation of traces in traffic accidents", arises from a multidisciplinary reflection between the different aspects of forensic science. It is primarily a research aimed to demonstrate the benefits of synergy between microtrace evidence and accidents dynamics. To give a very operational dimension to this work, all the undertaken initiatives were centred so as to optimise the activity of the first participants on the crime scene.After an introductory part treating theoretical aspects of the reconstruction of an accident scene the reader is invited to get acquainted with five practical chapters, according to the doctrine "from general to particular". For the first stage of this practical part, the problem of the morphology of traces is approached and sequences of examinations are proposed to improve the interpretation of the contacts between vehicles and obstacles involved in an accident. Afterwards, the mechanisms of transfer of traces of paint are studied and a series of tests in laboratory is practised on pieces of automobile bodies. Various parameters are thus tested to understand their impact on the fragility of a system of paint. It follows that a list of treated cases (crash-tests and real cases) is created, allowing to bring interesting information on the treatment of a case and confirm the obtained results. Then, this work goes on with a collection of traces, stemming from the acquired experience that aims to steer the research and the taking of evidence on scenes. Finally, the practical part of this thesis ends with the problem of a database « accident », allowing an optimal management of the collected traces.
Resumo:
Red light running (RLR) is a problem in the US that has resulted in 165,000 injuries and 907 fatalities annually. In Iowa, RLR-related crashes make up 24.5 percent of all crashes and account for 31.7 percent of fatal and major injury crashes at signalized intersections. RLR crashes are a safety concern due to the increased likelihood of injury compared to other types of crashes. One tool used to combat red light running is automated enforcement in the form of RLR cameras. Automated enforcement, while effective, is often controversial. Cedar Rapids, Iowa installed RLR and speeding cameras at seven intersections across the city. The intersections were chosen based on crash rates and whether cameras could feasibly be placed at the intersection approaches. The cameras were placed starting in February 2010 with the last one becoming operational in December 2010. An analysis of the effect of the cameras on safety at these intersections was determined prudent in helping to justify the installation and effectiveness of the cameras. The objective of this research was to assess the safety effectiveness of the RLR program that has been implemented in Cedar Rapids. This was accomplished by analyzing data to determine changes in the following metrics: Reductions in red light violation rates based on overall changes, time of day changes, and changes by lane Effectiveness of the cameras over time Time in which those running the red light enter the intersection Changes in the average headway between vehicles entering the intersection
Resumo:
Single-vehicle run-off-road crashes are the most common crash type on rural two-lane Iowa roads. Rumble strips have proven effective in mitigating these crashes, but the strips are commonly installed in paved shoulders on higher-volume roads that are owned by the State of Iowa. Lower-volume paved rural roads owned by local agencies do not commonly feature paved shoulders but frequently experience run-off-road crashes. This project involved installing rumble stripes, which are a combination of conventional rumble strips with a painted edge line placed on the surface of the milled area, along the edge of the travel lanes, but at a narrow width to avoid possible intrusion into the normal vehicle travel paths. The research described in this report was part of a project funded by the Federal Highway Administration, Iowa Highway Research Board, and Iowa Department of Transportation to evaluate the effectiveness of edge-line rumble strips in Iowa. The project evaluated the effectiveness of rumble stripes in reducing run-off-road crashes and in improving the longevity and wet-weather visibility of edge-line markings. This project consisted of two phases. The first phase was to select pilot study locations, select a set of test sites, install rumble stripes, summarize lessons learned during installation, and provide a preliminary assessment of the rumble stripes’ performance. The purpose of this report was to document results from Phase II. A before and after crash analysis was conducted to assess whether use of the treatment had resulted in fewer crashes. However, due to low sample size, results of the analysis were inconclusive. Lateral position was also evaluated before and after installation of the treatment to determine whether vehicles engaged in better lane keeping. Pavement marking wear was also assessed.
Resumo:
The Iowa Department of Transportation (DOT) requested a road safety audit (RSA) of the US 59/IA 9 intersection in northwestern Iowa, just south of the Minnesota border, to assess intersection environmental issues and crash history and recommend appropriate mitigation to address the identified safety issues at the intersection. Although the number of crashes at the location has not been significantly higher than the statewide average for similar intersections, the severity of these crashes has been of concern. This RSA was unique in that it included intersection video observation and recorded traffic conflict data analysis, along with the daylight and nighttime field reviews. This report outlines the findings and recommendations of the RSA team for addressing the safety concerns at this intersection.
Resumo:
OBJECTIVE: Accurate identification of major trauma patients in the prehospital setting positively affects survival and resource utilization. Triage algorithms using predictive criteria of injury severity have been identified in paramedic-based prehospital systems. Our rescue system is based on prehospital paramedics and emergency physicians. The aim of this study was to evaluate the accuracy of the prehospital triage performed by physicians and to identify the predictive factors leading to errors of triage.METHODS: Retrospective study of trauma patients triaged by physicians. Prehospital triage was analyzed using criteria defining major trauma victims (MTVs, Injury Severity Score >15, admission to ICU, need for immediate surgery and death within 48 h). Adequate triage was defined as MTVs oriented to the trauma centre or non-MTV (NMTV) oriented to regional hospitals.RESULTS: One thousand six hundred and eighti-five patients (blunt trauma 96%) were included (558 MTV and 1127 NMTV). Triage was adequate in 1455 patients (86.4%). Overtriage occurred in 171 cases (10.1%) and undertriage in 59 cases (3.5%). Sensitivity and specificity was 90 and 85%, respectively, whereas positive predictive value and negative predictive value were 75 and 94%, respectively. Using logistic regression analysis, significant (P<0.05) predictors of undertriage were head or thorax injuries (odds ratio >2.5). Predictors of overtriage were paediatric age group, pedestrian or 2 wheel-vehicle road traffic accidents (odds ratio >2.0).CONCLUSION: Physicians using clinical judgement provide effective prehospital triage of trauma patients. Only a few factors predicting errors in triage process were identified in this study.
Resumo:
Excessive speed is often cited as a primary driver factor in crashes, particularly rural two-lane crashes. It has also been suggested that speed plays a significant role in crashes on curves. However, the relationship between speed and crashes on curves is not well documented because it is difficult to determine driver speed after the fact when investigating a crash. One method to begin documenting this relationship is to explore the relationship between lateral position and speed as a crash surrogate. For this study, the researchers collected speed and lateral position data for three rural two-lane curves. The relationship between lateral position and speed was assessed by comparing the odds of a near-lane crossing for vehicles traveling 5 or more mph over the advisory speed to those for vehicles traveling below that threshold.
Resumo:
The Federal Highway Administration (FHWA) estimates that 58 percent of roadway fatalities are lane departures, while 40 percent of fatalities are single-vehicle run-off-road (SVROR) crashes. Addressing lane-departure crashes is therefore a priority for national, state, and local roadway agencies. Horizontal curves are of particular interest because they have been correlated with increased crash occurrence. This toolbox was developed to assist agencies address crashes at rural curves. The main objective of this toolbox is to summarize the effectiveness of various known curve countermeasures. While education, enforcement, and policy countermeasures should also be considered, they were not included given the toolbox focuses on roadway-based countermeasures. Furthermore, the toolbox is geared toward rural two-lane curves. The research team identified countermeasures based on their own research, through a survey of the literature, and through discussions with other professionals. Coverage of curve countermeasures in this toolbox is not necessarily comprehensive. For each countermeasure covered, this toolbox includes the following information: description, application, effectiveness, advantages, and disadvantages.
Resumo:
In response to local concerns, the Iowa Department of Transportation (DOT) requested a road safety audit (RSA) for the IA Highway 28 corridor through the City of Norwalk in Warren County, Iowa, from the south corporate limits of Norwalk through the IA 5 interchange in Polk County, Iowa. The audit included meeting with City staff to discuss concerns, review crash history and operational issues, observe the route under daylight and nighttime conditions, and analyze available data. This report outlines the findings and recommendations of the audit team for addressing the safety concerns and operational matters along this corridor.
Resumo:
Incentive/disincentive clauses (I/D) are designed to award payments to contractors if they complete work ahead of schedule and to deduct payments if they exceed the completion time. A previously unanswered question is, “Did the costs of the actual work zone impacts that were avoided justify the incentives paid?” This report answers that question affirmatively based on an evaluation of 20 I/D projects in Missouri from 2008 to 2011. Road user costs (RUC) were used to quantify work zone impacts and included travel delays, vehicle operating costs, and crash costs. These were computed using work zone traffic conditions for partial-closure projects and detour volumes and routes for full-closure projects. Conditions during construction were compared to after construction. Crash costs were computed using Highway Safety Manual methodology. Safety Performance Functions produced annual crash frequencies that were translated into crash cost savings. In considering an average project, the percentage of RUC savings was around 13% of the total contract amount, or $444,389 of $3,464,620. The net RUC savings produced was around $7.2 million after subtracting the approximately $1.7 million paid in incentives. In other words, for every dollar paid in incentives, approximately 5.3 dollars of RUC savings resulted. I/D provisions were very successful in saving RUC for projects with full-closure, projects in urban areas, and emergency projects. Rural, non-emergency projects successfully saved RUC but not at the same level as other projects. The I/D contracts were also compared to all Missouri Department of Transportation contracts for the same time period. The results show that I/D projects had a higher on-time completion percentage and a higher number of bids per call than average projects. But I/D projects resulted in 4.52% higher deviation from programmed costs and possibly more changes made after the award. A survey of state transportation departments and contractors showed that both agreed to the same issues that affect the success of I/D contracts. Legal analysis suggests that liquidated damages is preferred to disincentives, since enforceability of disincentives may be an issue. Overall, in terms of work zone impact mitigation, I/D contracts are very effective at a relatively low cost.
Resumo:
The Institute for Transportation (InTrans) at Iowa State University completed work on an in-depth study of crash history on lowvolume, rural roads in Iowa in December 2010. Results indicated that unpaved roads with traffic volumes greater than 100 vehicles per day (vpd) exhibit significantly higher crash frequencies, rates, and densities than any other class of low-volume road examined, paved or unpaved. The total mileage for this class of roadway in Iowa is only about 4,400 miles, spread over 99 counties in the state, which is certainly a manageable number of miles for individual rural agencies. The purpose of this study was to identify and examine several unpaved, local road segments with higher than average crash frequencies, select and undertake potentially-beneficial mitigation, and evaluate the results as time allowed. A variety of low-cost options were considered, including engineering improvements, enhanced efforts by law enforcement, and educational initiatives. Using input, active support, and participation from local agencies and state and Federal safety advocates, the study afforded a unique opportunity to examine useful tools for local rural agencies to utilize in addressing safety on this particular type of roadway.
Resumo:
The Institute for Transportation (InTrans) at Iowa State University completed work on an in-depth study of crash history on lowvolume, rural roads in Iowa in December 2010. Results indicated that unpaved roads with traffic volumes greater than 100 vehicles per day (vpd) exhibit significantly higher crash frequencies, rates, and densities than any other class of low-volume road examined, paved or unpaved. The total mileage for this class of roadway in Iowa is only about 4,400 miles, spread over 99 counties in the state, which is certainly a manageable number of miles for individual rural agencies. The purpose of this study was to identify and examine several unpaved, local road segments with higher than average crash frequencies, select and undertake potentially-beneficial mitigation, and evaluate the results as time allowed. A variety of low-cost options were considered, including engineering improvements, enhanced efforts by law enforcement, and educational initiatives. Using input, active support, and participation from local agencies and state and Federal safety advocates, the study afforded a unique opportunity to examine useful tools for local rural agencies to utilize in addressing safety on this particular type of roadway.