738 resultados para Peacock, Wayne
Resumo:
Background: Association mapping, initially developed in human disease genetics, is now being applied to plant species. The model species Arabidopsis provided some of the first examples of association mapping in plants, identifying previously cloned flowering time genes, despite high population sub-structure. More recently, association genetics has been applied to barley, where breeding activity has resulted in a high degree of population sub-structure. A major genotypic division within barley is that between winter- and spring-sown varieties, which differ in their requirement for vernalization to promote subsequent flowering. To date, all attempts to validate association genetics in barley by identifying major flowering time loci that control vernalization requirement (VRN-H1 and VRN-H2) have failed. Here, we validate the use of association genetics in barley by identifying VRN-H1 and VRN-H2, despite their prominent role in determining population sub-structure. Results: By taking barley as a typical inbreeding crop, and seasonal growth habit as a major partitioning phenotype, we develop an association mapping approach which successfully identifies VRN-H1 and VRN-H2, the underlying loci largely responsible for this agronomic division. We find a combination of Structured Association followed by Genomic Control to correct for population structure and inflation of the test statistic, resolved significant associations only with VRN-H1 and the VRN-H2 candidate genes, as well as two genes closely linked to VRN-H1 (HvCSFs1 and HvPHYC). Conclusion: We show that, after employing appropriate statistical methods to correct for population sub-structure, the genome-wide partitioning effect of allelic status at VRN-H1 and VRN-H2 does not result in the high levels of spurious association expected to occur in highly structured samples. Furthermore, we demonstrate that both VRN-H1 and the candidate VRN-H2 genes can be identified using association mapping. Discrimination between intragenic VRN-H1 markers was achieved, indicating that candidate causative polymorphisms may be discerned and prioritised within a larger set of positive associations. This proof of concept study demonstrates the feasibility of association mapping in barley, even within highly structured populations. A major advantage of this method is that it does not require large numbers of genome-wide markers, and is therefore suitable for fine mapping and candidate gene evaluation, especially in species for which large numbers of genetic markers are either unavailable or too costly.
Resumo:
Proton exchange membranes (PEM’s) are currently under investigation for membrane water electrolysis (PEMWE) to deliver efficient production of the high purity hydrogen needed to supply emerging clean-energy technologies such as hydrogen fuel cells. The microblock aromatic ionomer described in this work achieves high mechanical strength in an aqueous environment as a result of its designed, biphasic morphology and displays many of the qualities required in a PEM. The new ionomer membrane thus shows good proton conductivity (63 mS cm−1 at 80 °C and 100% RH), while retaining mechanical integrity under high temperature, hydrated conditions. Testing in electrolysis has shown good energy efficiency (1.67 V at 1 A cm−2 and 80 °C, corresponding to 4 kWh/Nm3 of H2), making this ionomer a potential candidate for commercial application in PEMWE.
Resumo:
Polymers are used in many everyday technologies and their degradation due to environmental exposure has lead to great interest in materials which can heal and repair themselves. In order to design new self healing polymers it's important to understand the fundamental healing mechanisms behind the material.Healable Polymer Systems will outline the key concepts and mechanisms underpinning the design and processing of healable polymers, and indicate potential directions for progress in the future development and applications of these fascinating and potentially valuable materials. The book covers the different techniques developed successfully to date for both autonomous healable materials (those which do not require an external stimulus to promote healing) and rehealable or remendable materials (those which only recover their original physical properties if a specific stimulus is applied). These include the encapsulated-monomer approach, reversible covalent bond formation, irreversible covalent bond formation and supramolecular self-assembly providing detailed insights into their chemistry.Written by leading experts, the book provides polymer scientists with a compact and readily accessible source of reference for healable polymer systems.
Resumo:
This chapter details the design, synthesis and evaluation techniques required to produce healable supramolecular materials. Key developments in supramolecular polymer chemistry that laid down the design concepts necessary to produce responsive materials are summarized. Subsequently, select examples from the literature concerning the synthesis and analysis of healable materials containing hydrogen bonding, π−π stacking and metal–ligand interactions are evaluated. The last section describes the most recent efforts to produce healable gels for niche applications, including electrolytes and tissue engineering scaffolds. The chapter also describes the design criteria and production of nano-composite materials that exhibit dramatically increased strength compared to previous generations of supramolecular materials, whilst still retaining the key healing characteristics.
Resumo:
Television’s long-form storytelling has the potential to allow the rippling of music across episodes and seasons in interesting ways. In the integration of narrative, music and meaning found in The O.C. (Fox, FOX 2003-7), popular song’s allusive and referential qualities are drawn upon to particularly televisual ends. At times embracing its ‘disruptive’ presence, at others suturing popular music into narrative, at times doing both at once. With television studies largely lacking theories of music, this chapter draws on film music theory and close textual analysis to analyse some of the programme's music moments in detail. In particular it considers the series-spanning use of Jeff Buckley’s cover of ‘Hallelujah’ (and its subsequent oppressive presence across multiple televisual texts), the end of episode musical montage and the use of recurring song fragments as theme within single episodes. In doing so it highlights music's role in the fragmentation and flow of the television aesthetic and popular song’s structural presence in television narrative. Illustrating the multiplicity of popular song’s use in television, these moments demonstrate song’s ability to provide narrative commentary, yet also make particular use of what Ian Garwood describes as the ability of ‘a non-diegetic song to exceed the emotional range displayed by diegetic characters’ (2003:115), to ‘speak’ for characters or to their feelings, contributing to both teen TV’s melodramatic affect and narrative expression.
Resumo:
Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.
Resumo:
Fieldwork is an important and often enjoyable part of learning in Bioscience degree courses, however it is unclear how the recent reforms to Higher Education (HE) may impact the future funding of outdoor learning. This paper reports on the findings from a recent survey of 30 HE Bioscience practitioners from across the UK. Their current level of fieldwork provision and factors affecting this provision in the future were explored. The data showed that the level of fieldwork had remained similar over the past five years and this was set to remain so over the next academic year and also into the next five years (when it may even increase). Funding of fieldwork was under review in most institutions due to the increase in student tuition fees and it was found that in some cases the cost of compulsory fieldwork will be subsumed within the overall course fee. Many influencing factors were discussed, but the most frequently raised topics were that of the development of employability skills during fieldwork and its importance in attracting and retaining students. Both topics are high on the agenda of HE institutions going forward into the new funding model, suggesting that fieldwork will remain a central part of the Bioscience curriculum.
Resumo:
A new, healable, supramolecular nanocomposite material has been developed and evaluated. The material comprises a blend of three components: a pyrene-functionalized polyamide, a polydiimide and pyrenefunctionalized gold nanoparticles (P-AuNPs). The polymeric components interact by forming well-defined p–p stacked complexes between p-electron rich pyrenyl residues and p-electron deficient polydiimide residues. Solution studies in the mixed solvent chloroform–hexafluoroisopropanol (6 : 1, v/v) show that mixing the three components (each of which is soluble in isolation), results in the precipitation of a supramolecular, polymer nanocomposite network. The precipitate thus formed can be re-dissolved on heating, with the thermoreversible dissolution/precipitation procedure repeatable over at least 5 cycles. Robust, self-supporting composite films containing up to 15 wt% P-AuNPs could be cast from 2,2,2- trichloroethanol. Addition of as little as 1.25 wt% P-AuNPs resulted in significantly enhanced mechanical properties compared to the supramolecular blend without nanoparticles. The nanocomposites showed a linear increase in both tensile moduli and ultimate tensile strength with increasing P-AuNP content. All compositions up to 10 wt% P-AuNPs exhibited essentially quantitative healing efficiencies. Control experiments on an analogous nanocomposite material containing dodecylamine-functionalized AuNPs (5 wt%) exhibited a tensile modulus approximately half that of the corresponding nanocomposite that incorporated 5 wt% pyrene functionalized-AuNPs, clearly demonstrating the importance of the designed interactions between the gold filler and the supramolecular polymer matrix.
Resumo:
Novel acid-terminated hyperbranched polymers (HBPs) containing adipic acid and oxazoline monomers derived from oleic and linoleic acid have been synthesized via a bulk polymerization procedure. Branching was achieved as a consequence of an acid-catalyzed opening of the oxazoline ring to produce a trifunctional monomer in situ which delivered branching levels of >45% as determined by 1H and 13C NMR spectroscopy. The HBPs were soluble in common solvents, such as CHCl3, acetone, tetrahydrofuran, dimethylformamide, and dimethyl sulfoxide and were further functionalized by addition of citronellol to afford white-spirit soluble materials that could be used in coating formulations. During end group modification, a reduction in branching levels of the HBPs (down to 12–24%) was observed, predominantly on account of oxazoline ring reformation and trans-esterification processes under the reaction conditions used. In comparison to commercial alkyd resin paint coatings, formulations of the citronellol-functionalized hyperbranched materials blended with a commercial alkyd resin exhibited dramatic decreases of the blend viscosity when the HBP content was increased. The curing characteristics of the HBP/alkyd blend formulations were studied by dynamic mechanical analysis which revealed that the new coatings cured more quickly and produced tougher materials than otherwise identical coatings prepared from only the commercial alkyd resins.
Resumo:
This mini-review details the recent development of self-healing and mendable polymeric materials which take advantage of the reversible characteristics of non-covalent interactions during their physical recovery process. Supramolecular polymer systems which undergo spontaneous (autonomous) healing, as well as those which require external stimuli to initiate the healing process (healable/mendable), are introduced and discussed. Supramolecular polymers offer key advantages over alternative approaches, as these materials can typically withstand multiple healing cycles without substantial loss of performance, as a consequence of the highly directional and fully reversible non-covalent interactions present within the polymer matrix.
Resumo:
A series of aromatic ureas have been synthesised and found to exhibit strong gelation or even supergelation characteristics in organic solvents to afford colourless or translucent gel materials. The synthesis of these materials, assessment of their gelation characteristics and rheological properties are reported in this paper.
Resumo:
The stylistic strategies, in particular those concerning camera placement and movement, of The Shield (FX, 2002-08) seem to directly fit into an aesthetic tradition developed by US cop dramas like Hill Street Blues (NBC, 1981-87), Homicide: Life on the Street (NBC, 1993-99) and NYPD Blue (ABC, 1993-2005). In these precinct dramas, decisions concerning spatial arrangements of camera and performer foreground a desire to present and react to action while it is happening, and with a minimum of apparent construction. As Jonathan Bignell (2009) has argued, the intimacy and immediacy of this stylistic approach, which has at its core an attempt at a documentary-like realism, is important to the police drama as a genre, while also being tendencies that have been taken as specific characteristics of television more generally. I explore how The Shield develops this tradition of a reactive camera style in its strategy of shooting with two cameras rather than one, with specific attention to how this shapes the presentation of performance. Through a detailed examination of the relationship between performer and camera(s) the chapter considers the way the series establishes access to the fictional world, which is crucial to the manner of police investigation central to its drama, and the impact of this on how we engage with performance. The cameras’ placement appears to balance various impulses, including: the demands of attending to an ensemble cast, spontaneous performance style, and action that is physically dynamic and involving. In a series that makes stylistic decisions around presentation of the body on-screen deliberately close yet obstructive, involving yet fleeting, the chapter explores the affect of this on the watching experience.
Resumo:
Polymers with the ability to heal themselves could provide access to materials with extended lifetimes in a wide range of applications such as surface coatings, automotive components and aerospace composites. Here we describe the synthesis and characterisation of two novel, stimuli-responsive, supramolecular polymer blends based on π-electron-rich pyrenyl residues and π-electron-deficient, chain-folding aromatic diimides that interact through complementary π–π stacking interactions. Different degrees of supramolecular “cross-linking” were achieved by use of divalent or trivalent poly(ethylene glycol)-based polymers featuring pyrenyl end-groups, blended with a known diimide–ether copolymer. The mechanical properties of the resulting polymer blends revealed that higher degrees of supramolecular “cross-link density” yield materials with enhanced mechanical properties, such as increased tensile modulus, modulus of toughness, elasticity and yield point. After a number of break/heal cycles, these materials were found to retain the characteristics of the pristine polymer blend, and this new approach thus offers a simple route to mechanically robust yet healable materials.