995 resultados para Patron driven acquisition
Resumo:
Within the one-dimensional tight-binding model;rnd chi-3 approximation, we have calculated four-wave-mixing (FWM) signals for a semiconductor superlattice in the presence of both static and high-frequency electric fields. When the exciton effect is negligible, the time-periodic field dynamically delocalizes the otherwise localized Wannier-Stark states, and accordingly quasienergy band structures are formed, and manifest in the FWM spectra as a series of equally separated continua. The width of each continuum is proportional to the joint width of the valence and conduction minibands and is independent of the Wannier-Stark index. The realistic homogeneous broadening blurs the continua into broad peaks, whose line shapes, far from the Lorentzian, vary with the delay time in the FWM spectra. The swinging range of the peaks is just the quasienergy bandwidth. The dynamical delocalization (DDL) also induces significant FWM signals well beyond the excitation energy window. When the Coulomb interaction is taken into account, the unequal spacing between the excitonic Wannier-Stark levels weakens the DDL effect, and the FWM spectrum is transformed into groups of discrete lines. Strikingly, the groups are evenly spaced by the ac field frequency, reflecting the characteristic of the quasienergy states. The homogeneous broadening again smears out the line structures, leading to the excitonic FWM spectra quite similar to those without the exciton effect. However, all these features predicted by the dynamical theory do not appear in a recent experiment [Phys. Rev. Lett. 79, 301 (1997)], in which, by using the static approximation the observed Wannier-Stark ladder with delay-time-dependent spacing in the FWM spectra is attributed to a temporally periodic dipole field, produced by the Bloch oscillation of electrons in real space. The contradiction between the dynamical theory and the experiments is discussed. In addition, our calculation indicates that the dynamical localization coherently enhances the time-integrated FWM signals. The feasibility of using such a technique to study the dynamical localization phenomena is shown. [S0163-1829(99)10607-6].
facilitating formal specification acquisition by using recursive functions on context-free languages
Resumo:
Although formal specification techniques are very useful in software development, the acquisition of formal specifications is a difficult task. This paper presents the formal specification language LFC, which is designed to facilitate the acquisition and validation of formal specifications. LFC uses context-free languages for syntactic aspect and relies on a new kind of recursive functions, i.e. recursive functions on context-free languages, for semantic aspect of specifications. Construction and validation of LFC specifications are machine-aided. The basic ideas behind LFC, the main aspects of LFC, and the use of LFC and illustrative examples are described.
Resumo:
United Nations University, Int. Inst. for Softw. Technol., China; Vietnam National University, Hanoi, Vietnam; Vietnam Academy of Science and Technology, Vietnam
a constraint-driven human resource scheduling method in software development and maintenance process
Resumo:
The nonlinear optical absorption in a three-subband step asymmetric semiconductor quantum well driven by a strong terahertz (THz) field is investigated theoretically by employing the intersubband semiconductor-Bloch equations. We show that the optical absorption spectrum strongly depends on the intensity, frequency, and phase of the pump THz wave. The strong THz field induces THz sidebands and Autler-Townes splitting in the probe absorption spectrum. Varying the pump frequency can bring not only the new absorption peaks but also the changing of the energy separation of the two higher-energy levels. The dependence of the absorption spectrum on the phase of the pump THz wave is also very remarkable.
Resumo:
Micromachined comb-drive electrostatic resonators with folded-cantilever beams were designed and fabricated. A combination of Rayleigh's method and finite-element analysis was used to calculate the resonant frequency drift as we adjusted the device geometry and material parameters. Three micromachined lateral resonant resonators with different beam widths were fabricated. Their resonant frequencies were experimentally measured to be 64.5,147.2, and 255.5kHz, respectively, which are in good agreement with the simulated resonant frequency. It is shown that an improved frequency performance could be obtained on the poly 3C-SiC based device structural material systems with high Young's modulus.