916 resultados para POROUS MATERIALS
Resumo:
Materials, methods and systems are provided for the purifn., filtration and/or sepn. of certain mols. such as certain size biomols. Certain embodiments relate to supports contg. at least one polymethacrylate polymer engineered to have certain pore diams. and other properties, and which can be functionally adapted to for certain purifications, filtrations and/or sepns. Biomols. are selected from a group consisting of: polynucleotide mols., oligonucleotide mols. including antisense oligonucleotide mols. such as antisense RNA and other oligonucleotide mols. that are inhibitory of gene function such as small interfering RNA (siRNA), polypeptides including proteinaceous infective agents such as prions, for example, the infectious agent for CJD, and infectious agents such as viruses and phage.
Resumo:
Food materials are complex in nature as it has heterogeneous, amorphous, hygroscopic and porous properties. During processing, microstructure of food materials changes which significantly affects other properties of food. An appropriate understanding of the microstructure of the raw food material and its evolution during processing is critical in order to understand and accurately describe dehydration processes and quality anticipation. This review critically assesses the factors that influence the modification of microstructure in the course of drying of fruits and vegetables. The effect of simultaneous heat and mass transfer on microstructure in various drying methods is investigated. Effects of changes in microstructure on other functional properties of dried foods are discussed. After an extensive review of the literature, it is found that development of food structure significantly depends on fresh food properties and process parameters. Also, modification of microstructure influences the other properties of final product. An enhanced understanding of the relationships between food microstructure, drying process parameters and final product quality will facilitate the energy efficient optimum design of the food processor in order to achieve high-quality food
Resumo:
This paper reports on the experimental testing of oxygen-enriched porous fuel injection in a scramjet engine. Fuel was injected via inlet mounted, oxide-based ceramic matrix composite (CMC) injectors on both flow path surfaces that covered a total of 9.2 % of the intake surface area. All experiments were performed at an enthalpy of 3.93−4.25±3.2% MJ kg−1, flight Mach number 9.2–9.6 and an equivalence ratio of 0.493±3%. At this condition, the engine was shown to be on the verge of achieving appreciable combustion. Oxygen was then added to the fuel prior to injection such that two distinct enrichment levels were achieved. Combustion was found to increase, by as much as 40 % in terms of combustion-induced pressure rise, over the fuel-only case with increasing oxygen enrichment. Further, the onset of combustion was found to move upstream with increasing levels of oxygen enrichment. Thrust, both uninstalled and specific, and specific impulse were found to be improved with oxygen enrichment. Enhanced fuel–air mixing due to the pre-mixing of oxygen with the fuel together with the porous fuel injection are believed to be the main contributors to the observed enhanced performance of the tested engine.
Resumo:
Dried plant food products are increasing in demand in the consumer market, leading to continuing research to develop better products and processing techniques. Plant materials are porous structures, which undergo large deformations during drying. For any given food material, porosity and other cellular parameters have a direct influence on the level of shrinkage and deformation characteristics during drying, which involve complex mechanisms. In order to better understand such mechanisms and their interrelationships, numerical modelling can be used as a tool. In contrast to conventional grid-based modelling techniques, it is considered that meshfree methods may have a higher potential for modelling large deformations of multiphase problem domains. This work uses a meshfree based microscale plant tissue drying model, which was recently developed by the authors. Here, the effects of porosity have been newly accounted for in the model with the objective of studying porosity development during drying and its influence on shrinkage at the cellular level. For simplicity, only open pores are modelled and in order to investigate the influence of different cellular parameters, both apple and grape tissues were used in the study. The simulation results indicated that the porosity negatively influences shrinkage during drying and the porosity decreases as the moisture content reduces (when open pores are considered). Also, there is a clear difference in the deformations of cells, tissues and pores, which is mainly influenced by the cell wall contraction effects during drying.
Resumo:
Tertiary institutions now face serious challenges. Modern industry requires engineering graduates with strong knowledge of modern technologies, highly practical focus, management skills, ability to work individually and in a team, understanding of environmental issues and many other skills and graduate attributes. Institutions in the tertiary sector change courses and modify curriculum to reflect challenges of the modern industry and make engineering graduates better prepared for the “real world”. Queensland University of Technology in the recent years introduced an innovative structure of engineering courses with a common core for Bachelor of Engineering Mechanical, Infomechatronics and Medical, where manufacturing is taught in conjunction with engineering design and engineering materials. In this paper we discuss the innovative curriculum structure, teaching and learning approaches of coherent delivery of manufacturing in conjunction with engineering design and
Resumo:
Nonlinear time-fractional diffusion equations have been used to describe the liquid infiltration for both subdiffusion and superdiffusion in porous media. In this paper, some problems of anomalous infiltration with a variable-order timefractional derivative in porous media are considered. The time-fractional Boussinesq equation is also considered. Two computationally efficient implicit numerical schemes for the diffusion and wave-diffusion equations are proposed. Numerical examples are provided to show that the numerical methods are computationally efficient.
Resumo:
The silk protein fibroin (Bombyx mori) provides a potential substrate for use in ocular tissue reconstruction. We have previously demonstrated that transparent membranes produced from fibroin support cultivation of human limbal epithelial (HLE) cells (Tissue Eng A. 14(2008)1203-11). We extend this body of work to studies of human limbal stromal cell (HLS) growth on fibroin in the presence and absence of serum. Also, we investigate the ability to produce a bi-layered composite scaffold of fibroin with an upper HLE layer and lower HLS layer.
Resumo:
A nitrogen modified graphdiyne is investigated concerning its performance for hydrogen purification from CH4 and CO by density functional theory with dispersion correction and transition state theory. After nitrogen doping, the porous N-graphdiyne nano-mesh shows a reduced H2 diffusion barrier and increased CH4/CO diffusion barriers, hence leading to an enhanced hydrogen purification capability.
Resumo:
Nanotubes and nanosheets are low-dimensional nanomaterials with unique properties that can be exploited for numerous applications. This book offers a complete overview of their structure, properties, development, modeling approaches, and practical use. It focuses attention on boron nitride (BN) nanotubes, which have had major interest given their special high-temperature properties, as well as graphene nanosheets, BN nanosheets, and metal oxide nanosheets. Key topics include surface functionalization of nanotubes for composite applications, wetting property changes for biocompatible environments, and graphene for energy storage applications
Resumo:
A series of macro–mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesized. The materials were calcined at 723 K and were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), X-ray photoelectron spectroscopy (XPS) and UV–visible spectroscopy (UV–visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100 °C), which makes it possible to synthesize such materials on industrial scale. The performance–morphology relationship of as-synthesized TiO2/Al2O3 nanocomposites was investigated by the photocatalytic degradation of a model organic pollutant under UV irradiation. The samples with 1D (fibrous) morphology exhibited superior catalytic performance than the samples without, such as titania microspheres.
Resumo:
This Special Issue presents recent research advances in various aspects of advanced nanomaterials including synthesis, micro- and nanostructures, mechanical properties, modeling, and applications for material nanotechnology community. In particular, it aims to reflect recent advances in mechanical behaviors, for example, stiffness, strength, ductility, fatigue, and wear resistance, of various nanomaterials including nanocrystalline, inorganic, nonmetallic nanomaterials, composites with nanosized fillers, and biomaterials with nanosized structures. The role of this Special Issue is to bridge the gaps among fabrication techniques, experimental techniques, numerical modeling, and applications for some new nanomaterials and to investigate some key issues related to the mechanical properties of the nanomaterials. It brings together researchers working at the frontier of the mechanical behavior of nanomaterials...
Resumo:
Developing and maintaining a successful institutional repository for research publications requires a considerable investment by the institution. Most of the money is spent on developing the skill-sets of existing staff or hiring new staff with the necessary skills. The return on this investment can be magnified by using this valuable infrastructure to curate collections of other materials such as learning objects, student work, conference proceedings and institutional or local community heritage materials. When Queensland University of Technology (QUT) implemented its repository for research publications (QUT ePrints) over 11 years ago, it was one of the first institutional repositories to be established in Australia. Currently, the repository holds over 29,000 open access research publications and the cumulative total number of full-text downloads for these document now exceeds 16 million. The full-text deposit rate for recently-published peer reviewed papers (currently over 74%) shows how well the repository has been embraced by QUT researchers. The success of QUT ePrints has resulted in requests to accommodate a plethora of materials which are ‘out of scope’ for this repository. QUT Library saw this as an opportunity to use its repository infrastructure (software, technical know-how and policies) to develop and implement a metadata repository for its research datasets (QUT Research Data Finder), a repository for research-related software (QUT Software Finder) and to curate a number of digital collections of institutional and local community heritage materials (QUT Digital Collections). This poster describes the repositories and digital collections curated by QUT Library and outlines the value delivered to the institution, and the wider community, by these initiatives.
Resumo:
The marginalisation that Indigenous secondary students experience in zoology science lessons can be attributed to a chasm they experience between their life in community and the classroom. The study found that the integration of Indigenous and Western science knowledge can provide transformative learning experiences for students which work to strengthen their sense of belonging to community and school. Using action research, the study investigated the integration of both-ways science education into students' zoology lessons. It privileged the community's cultural expertise, practices and connections with students and their families, which worked to enhance student engagement in their learning.
Resumo:
Developing nano/micro-structures which can effectively upgrade the intriguing properties of electrode materials for energy storage devices is always a key research topic. Ultrathin nanosheets were proved to be one of the potential nanostructures due to their high specific surface area, good active contact areas and porous channels. Herein, we report a unique hierarchical micro-spherical morphology of well-stacked and completely miscible molybdenum disulfide (MoS2) nanosheets and graphene sheets, were successfully synthesized via a simple and industrial scale spray-drying technique to take the advantages of both MoS2 and graphene in terms of their high practical capacity values and high electronic conductivity, respectively. Computational studies were performed to understand the interfacial behaviour of MoS2 and graphene, which proves high stability of the composite with high interfacial binding energy (−2.02 eV) among them. Further, the lithium and sodium storage properties have been tested and reveal excellent cyclic stability over 250 and 500 cycles, respectively, with the highest initial capacity values of 1300 mAh g−1 and 640 mAh g−1 at 0.1 A g−1.