909 resultados para POISSON REGRESSION
Resumo:
Robust estimators for accelerated failure time models with asymmetric (or symmetric) error distribution and censored observations are proposed. It is assumed that the error model belongs to a log-location-scale family of distributions and that the mean response is the parameter of interest. Since scale is a main component of mean, scale is not treated as a nuisance parameter. A three steps procedure is proposed. In the first step, an initial high breakdown point S estimate is computed. In the second step, observations that are unlikely under the estimated model are rejected or down weighted. Finally, a weighted maximum likelihood estimate is computed. To define the estimates, functions of censored residuals are replaced by their estimated conditional expectation given that the response is larger than the observed censored value. The rejection rule in the second step is based on an adaptive cut-off that, asymptotically, does not reject any observation when the data are generat ed according to the model. Therefore, the final estimate attains full efficiency at the model, with respect to the maximum likelihood estimate, while maintaining the breakdown point of the initial estimator. Asymptotic results are provided. The new procedure is evaluated with the help of Monte Carlo simulations. Two examples with real data are discussed.
Resumo:
The relationship between hypoxic stress, autophagy, and specific cell-mediated cytotoxicity remains unknown. This study shows that hypoxia-induced resistance of lung tumor to cytolytic T lymphocyte (CTL)-mediated lysis is associated with autophagy induction in target cells. In turn, this correlates with STAT3 phosphorylation on tyrosine 705 residue (pSTAT3) and HIF-1α accumulation. Inhibition of autophagy by siRNA targeting of either beclin1 or Atg5 resulted in impairment of pSTAT3 and restoration of hypoxic tumor cell susceptibility to CTL-mediated lysis. Furthermore, inhibition of pSTAT3 in hypoxic Atg5 or beclin1-targeted tumor cells was found to be associated with the inhibition Src kinase (pSrc). Autophagy-induced pSTAT3 and pSrc regulation seemed to involve the ubiquitin proteasome system and p62/SQSTM1. In vivo experiments using B16-F10 melanoma tumor cells indicated that depletion of beclin1 resulted in an inhibition of B16-F10 tumor growth and increased tumor apoptosis. Moreover, in vivo inhibition of autophagy by hydroxychloroquine in B16-F10 tumor-bearing mice and mice vaccinated with tyrosinase-related protein-2 peptide dramatically increased tumor growth inhibition. Collectively, this study establishes a novel functional link between hypoxia-induced autophagy and the regulation of antigen-specific T-cell lysis and points to a major role of autophagy in the control of in vivo tumor growth.
Resumo:
We characterize the value function of maximizing the total discounted utility of dividend payments for a compound Poisson insurance risk model when strictly positive transaction costs are included, leading to an impulse control problem. We illustrate that well known simple strategies can be optimal in the case of exponential claim amounts. Finally we develop a numerical procedure to deal with general claim amount distributions.
Resumo:
When researchers introduce a new test they have to demonstrate that it is valid, using unbiased designs and suitable statistical procedures. In this article we use Monte Carlo analyses to highlight how incorrect statistical procedures (i.e., stepwise regression, extreme scores analyses) or ignoring regression assumptions (e.g., heteroscedasticity) contribute to wrong validity estimates. Beyond these demonstrations, and as an example, we re-examined the results reported by Warwick, Nettelbeck, and Ward (2010) concerning the validity of the Ability Emotional Intelligence Measure (AEIM). Warwick et al. used the wrong statistical procedures to conclude that the AEIM was incrementally valid beyond intelligence and personality traits in predicting various outcomes. In our re-analysis, we found that the reliability-corrected multiple correlation of their measures with personality and intelligence was up to .69. Using robust statistical procedures and appropriate controls, we also found that the AEIM did not predict incremental variance in GPA, stress, loneliness, or well-being, demonstrating the importance for testing validity instead of looking for it.
Resumo:
Logistic regression is included into the analysis techniques which are valid for observationalmethodology. However, its presence at the heart of thismethodology, and more specifically in physical activity and sports studies, is scarce. With a view to highlighting the possibilities this technique offers within the scope of observational methodology applied to physical activity and sports, an application of the logistic regression model is presented. The model is applied in the context of an observational design which aims to determine, from the analysis of use of the playing area, which football discipline (7 a side football, 9 a side football or 11 a side football) is best adapted to the child"s possibilities. A multiple logistic regression model can provide an effective prognosis regarding the probability of a move being successful (reaching the opposing goal area) depending on the sector in which the move commenced and the football discipline which is being played.
Resumo:
OBJECTIVE: To determine risk of Down syndrome (DS) in multiple relative to singleton pregnancies, and compare prenatal diagnosis rates and pregnancy outcome. DESIGN: Population-based prevalence study based on EUROCAT congenital anomaly registries. SETTING: Eight European countries. POPULATION: 14.8 million births 1990-2009; 2.89% multiple births. METHODS: DS cases included livebirths, fetal deaths from 20 weeks, and terminations of pregnancy for fetal anomaly (TOPFA). Zygosity is inferred from like/unlike sex for birth denominators, and from concordance for DS cases. MAIN OUTCOME MEASURES: Relative risk (RR) of DS per fetus/baby from multiple versus singleton pregnancies and per pregnancy in monozygotic/dizygotic versus singleton pregnancies. Proportion of prenatally diagnosed and pregnancy outcome. STATISTICAL ANALYSIS: Poisson and logistic regression stratified for maternal age, country and time. RESULTS: Overall, the adjusted (adj) RR of DS for fetus/babies from multiple versus singleton pregnancies was 0.58 (95% CI 0.53-0.62), similar for all maternal ages except for mothers over 44, for whom it was considerably lower. In 8.7% of twin pairs affected by DS, both co-twins were diagnosed with the condition. The adjRR of DS for monozygotic versus singleton pregnancies was 0.34 (95% CI 0.25-0.44) and for dizygotic versus singleton pregnancies 1.34 (95% CI 1.23-1.46). DS fetuses from multiple births were less likely to be prenatally diagnosed than singletons (adjOR 0.62 [95% CI 0.50-0.78]) and following diagnosis less likely to be TOPFA (adjOR 0.40 [95% CI 0.27-0.59]). CONCLUSIONS: The risk of DS per fetus/baby is lower in multiple than singleton pregnancies. These estimates can be used for genetic counselling and prenatal screening.
Resumo:
Comprend : Mahomet second. La Coquette corrigée ; L'Impromptu de campagne. Le Procureur arbitre ; Marius / De Caux ; L'oracle ; Le Faux savant / par Du Vaure
Resumo:
This paper investigates the use of ensemble of predictors in order to improve the performance of spatial prediction methods. Support vector regression (SVR), a popular method from the field of statistical machine learning, is used. Several instances of SVR are combined using different data sampling schemes (bagging and boosting). Bagging shows good performance, and proves to be more computationally efficient than training a single SVR model while reducing error. Boosting, however, does not improve results on this specific problem.
Resumo:
BACKGROUND: We assessed the impact of a multicomponent worksite health promotion program for0 reducing cardiovascular risk factors (CVRF) with short intervention, adjusting for regression towards the mean (RTM) affecting such nonexperimental study without control group. METHODS: A cohort of 4,198 workers (aged 42 +/- 10 years, range 16-76 years, 27% women) were analyzed at 3.7-year interval and stratified by each CVRF risk category (low/medium/high blood pressure [BP], total cholesterol [TC], body mass index [BMI], and smoking) with RTM and secular trend adjustments. Intervention consisted of 15 min CVRF screening and individualized counseling by health professionals to medium- and high-risk individuals, with eventual physician referral. RESULTS: High-risk groups participants improved diastolic BP (-3.4 mm Hg [95%CI: -5.1, -1.7]) in 190 hypertensive patients, TC (-0.58 mmol/l [-0.71, -0.44]) in 693 hypercholesterolemic patients, and smoking (-3.1 cig/day [-3.9, -2.3]) in 808 smokers, while systolic BP changes reflected RTM. Low-risk individuals without counseling deteriorated TC and BMI. Body weight increased uniformly in all risk groups (+0.35 kg/year). CONCLUSIONS: In real-world conditions, short intervention program participants in high-risk groups for diastolic BP, TC, and smoking improved their CVRF, whereas low-risk TC and BMI groups deteriorated. Future programs may include specific advises to low-risk groups to maintain a favorable CVRF profile.
Resumo:
We describe the case of a man with a history of complex partial seizures and severe language, cognitive and behavioural regression during early childhood (3.5 years), who underwent epilepsy surgery at the age of 25 years. His early epilepsy had clinical and electroencephalogram features of the syndromes of epilepsy with continuous spike waves during sleep and acquired epileptic aphasia (Landau-Kleffner syndrome), which we considered initially to be of idiopathic origin. Seizures recurred at 19 years and presurgical investigations at 25 years showed a lateral frontal epileptic focus with spread to Broca's area and the frontal orbital regions. Histopathology revealed a focal cortical dysplasia, not visible on magnetic resonance imaging. The prolonged but reversible early regression and the residual neuropsychological disorders during adulthood were probably the result of an active left frontal epilepsy, which interfered with language and behaviour during development. Our findings raise the question of the role of focal cortical dysplasia as an aetiology in the syndromes of epilepsy with continuous spike waves during sleep and acquired epileptic aphasia.
Resumo:
Référence bibliographique : Weigert, 314
Resumo:
Spatial data analysis mapping and visualization is of great importance in various fields: environment, pollution, natural hazards and risks, epidemiology, spatial econometrics, etc. A basic task of spatial mapping is to make predictions based on some empirical data (measurements). A number of state-of-the-art methods can be used for the task: deterministic interpolations, methods of geostatistics: the family of kriging estimators (Deutsch and Journel, 1997), machine learning algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models (Kanevski and Maignan, 2004; Kanevski et al., 1996), etc. All the methods mentioned above can be used for solving the problem of spatial data mapping. Environmental empirical data are always contaminated/corrupted by noise, and often with noise of unknown nature. That's one of the reasons why deterministic models can be inconsistent, since they treat the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the measurements as the realization of some spatial randomn process. To obtain the estimation with kriging one has to model the spatial structure of the data: spatial correlation function or (semi-)variogram. This task can be complicated if there is not sufficient number of measurements and variogram is sensitive to outliers and extremes. ANN is a powerful tool, but it also suffers from the number of reasons. of a special type ? multiplayer perceptrons ? are often used as a detrending tool in hybrid (ANN+geostatistics) models (Kanevski and Maignank, 2004). Therefore, development and adaptation of the method that would be nonlinear and robust to noise in measurements, would deal with the small empirical datasets and which has solid mathematical background is of great importance. The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector Regression. SLT is a general mathematical framework devoted to the problem of estimation of the dependencies from empirical data (Hastie et al, 2004; Vapnik, 1998). SLT models for classification - Support Vector Machines - have shown good results on different machine learning tasks. The results of SVM classification of spatial data are also promising (Kanevski et al, 2002). The properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the application of SVR for spatial mapping of physical quantities were obtained by the authorsin for mapping of medium porosity (Kanevski et al, 1999), and for mapping of radioactively contaminated territories (Kanevski and Canu, 2000). The present paper is devoted to further understanding of the properties of SVR model for spatial data analysis and mapping. Detailed description of the SVR theory can be found in (Cristianini and Shawe-Taylor, 2000; Smola, 1996) and basic equations for the nonlinear modeling are given in section 2. Section 3 discusses the application of SVR for spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Section 4 discusses the properties of the modelapplied to noised data or data with outliers.