905 resultados para PHOTONIC WIRES
Resumo:
In this work, a point by point method for the inscription of fibre Bragg gratings using a tightly focused infrared femtosecond laser is implemented for the first time. Fibre Bragg gratings are wavelength-selective, retro-reflectors which have become a key component in optical communications as well as offering great potential as a sensing tool. Standard methods of fabrication are based on UV inscription in fibre with a photosensitive core. Despite the high quality of the gratings, a number of disadvantages are associated with UV inscription, in particular, the requirements of a photosensitive fibre, the low thermal stability and the need to remove the protective coating prior to inscription. By combining the great flexibility offered by the point by point method with the advantages inherent to inscription by an infrared femtosecond laser, the previous disadvantages are overcome. The method here introduced, allows a fast inscription process at a rate of ~1mm/s, gratings of lengths between 1cm and 2cm exhibiting reflections in excess of 99%. Physical dimensions of these gratings differ significantly from those inscribed by other methods, in this case the grating is confined to a fraction of the cross section of the core, leading to strong and controllable birefringence and polarisation dependent loss. Finally, an investigation of the potential for their exploitation towards novel applications is carried out, devices such as directional bend sensors inscribed in single-mode fibre, superimposed but non-overlapping gratings, and single-mode, single-polarisation fibre lasers, were designed, fabricated and characterised based on point by point femtosecond inscription.
Resumo:
The microwave photonic responses of superstructured fiber Bragg gratings in combination with dispersive fiber are investigated theoretically and experimentally. The superstructured gratings are optimized, taking account of the spectral response of the broad-band source, Erbium-doped fiber amplifier, and optical tunable filter to achieve a filter response with sidelobe suppression of more than 60 dB. © 2004 IEEE.
Resumo:
A numerical model of a long period grating in photonic crystal fibre fabricated by an electric arc is proposed that allows for the spectral characterisation of the grating. In the combination with the suggested model of the photonic crystal and the experimentally recorded grating growth it is used to find the index change induced by the electric arc.
Resumo:
In order to characterise long period gratings fabricated in endlessly single mode photonic crystal fibres with bulk cladding we perform eigenanalysis of guided modes supported by these fibres. Resonant coupling occurs only when the beating length equals the multiple grating periods. Experimentally obtained grating spectra and sensitivity are fully explained using modified phase matching condition.
Resumo:
A study was conducted to observe the laser processing effects on the magnetic properties of amorphous wires. Weekly interacting heterogeneous structures with different magnetic properties were formed by the local annealing by argon laser. Favourable changes were observed due to the creation of local stresses and structural interfaces.
Resumo:
A series of symmetric and asymmetric LPGs were inscribed in photonic crystal fibre by a low repetition rate femtosecond laser system. The asymmetric LPGs were found to be spectrally sensitive to bend orientation, with some of the attenuation bands producing both red and blue wavelength shifts, whilst the symmetric devices produced only a unidirectional wavelength shift. Both sets of devices displayed strong polarisation dependence.
Resumo:
Currently, direct-write waveguide fabrication is probably the most widely studied application of femtosecond laser micromachining in transparent dielectrics. Devices such as buried waveguides, power splitters, couplers, gratings, and optical amplifiers have all been demonstrated. Waveguide properties depend critically on the sample material properties and writing laser characteristics. In this paper, we discuss the challenges facing researchers using the femtosecond laser direct-write technique with specific emphasis being placed on the suitability of fused silica and phosphate glass as device hosts for different applications.
Resumo:
The microwave photonic responses of superstructured fiber Bragg gratings in combination with dispersive fiber are investigated theoretically and experimentally. The superstructured gratings are optimized, taking account of the spectral response of the broad-band source, erbium-doped fiber amplifier, and optical tunable filter to achieve a filter response with sidelobe suppression of more than 60 dB.
Resumo:
A high frequency sensing interrogation system by using fiber Bragg grating based microwave photonic filtering is proposed, in which the wavelength measurement sensitivity is proportional to the RF modulation frequency applied to the optical signal.
Resumo:
A novel high-frequency fiber Bragg grating (FBG) sensing interrogation system by using fiber Sagnac-loop-based microwave photonic filtering is proposed and experimentally demonstrated. By adopting the microwave photonic filtering, the wavelength shift of sensing FBG can be converted into amplitude variation of the modulated electronic radio-frequency (RF) signal. In the experiment, the strain applied onto the sensing FBG has been demodulated by measuring the intensity of the recovered RF signal, and by modulating the RF signal with different frequencies, different interrogation sensitivities can be achieved.
Resumo:
The frequency dependent RF power degradation in direct modulated microwave photonic systems employing uniform period fibre Bragg gratingsFBG.as reflective elements is investigated. The results have implications in terms of the available RF bandwidth and the stability requirements for the fibre Bragg gratings.
Resumo:
The use of near infrared, high intensity femtosecond laser pulses for the inscription of long period fiber gratings in photonic crystal fiber is reported. The formation of grating structures in photonic crystal fiber is complicated by the fiber structure that allows wave-guidance but that impairs and scatters the femtosecond inscription beam. The effects of symmetric and asymmetric femtosecond laser inscriptions are compared and the polarization characteristics of long period gratings and their responses to external perturbations are reported.
Resumo:
An equivalent step index fibre with a silica core and air cladding is used to model photonic crystal fibres with large air holes. We model this fibre for linear polarisation (we focus on the lowest few transverse modes of the electromagnetic field). The equivalent step index radius is obtained by equating the lowest two eigenvalues of the model to those calculated numerically for the photonic crystal fibres. The step index parameters thus obtained can then be used to calculate nonlinear parameters like the nonlinear effective area of a photonic crystal fibre or to model nonlinear few-mode interactions using an existing model.
Resumo:
Editorial