995 resultados para Ostreopsis cf. ovata, Dimetilsolfoniopropionato (DMSP), Ovatossine, Interazioni microalga-batteri
Resumo:
FUNDAMENTO: A estimulação de ventrículo direito pode ser deletéria em pacientes com disfunção ventricular, porém, em pacientes com função normal, o impacto desta estimulação desencadeando disfunção ventricular clinicamente relevante não é completamente estabelecido. OBJETIVOS: Avaliar a evolução clínica, ecocardiográfica e laboratorial de pacientes, com função ventricular esquerdapreviamente normal, submetidos a implante de marca-passo. MÉTODO: Estudo observacional transversal em que foram acompanhados de forma prospectiva 20 pacientes submetidos a implante de marca-passo com os seguintes critérios de inclusão: função ventricular esquerda normal definida pelo ecocardiograma e estimulação ventricular superior a 90%. Foram avaliados: classe funcional (CF) (New York Heart Association), teste de caminhada de 6 minutos (TC6), dosagem do hormônio natriurético tipo B (BNP), avaliação ecocardiográfica (convencional e parâmetros de dessincronismo) e questionário de qualidade de vida (QV) (SF-36). A avaliação foi feita com dez dias (t1), quatro meses (t2), oito meses (t3), 12 meses (t4) e 24 meses (t5). RESULTADOS: Os parâmetros ecocardiográficos convencionais e de dessincronismo não apresentaram variação estatística significante ao longo do tempo. O TC6, a CF e a dosagem de BNP apresentaram piora ao final dos dois anos. A QV teve melhora inicial e piora ao final dos dois anos. CONCLUSÃO: O implante de marca-passo convencional foi associado à piora da classe funcional, piora do teste de caminhada, aumento da dosagem de BNP, aumento da duração do QRS e piora em alguns domínios da QV ao final de dois anos. Não houve alterações nas medidas ecocardiográficas (convencionais e medidas de assincronia).
Resumo:
Fundamento: O hipertireoidismo (Hi) exerce um amplo leque de influências em diversos parâmetros fisiológicos. Seu efeito perturbador sobre o sistema cardiovascular é um de seus impactos mais importantes. Além disso, o Hi foi clinicamente associado com o estresse induzido pela hiperativação do eixo hipotalâmico-pituitário-adrenal. Objetivo: Avaliar o impacto do Hi de curto prazo sobre o desempenho cardíaco e a atividade adrenal de ratos. Métodos: A indução de Hi em ratos Wistar através de injeções de T3 (150 μg/kg) por 10 dias (grupo com hipertireoidismo - GH) ou veículo (grupo controle). O desempenho cardiovascular foi avaliado por: ecocardiograma (ECO); razão peso do coração/peso corporal (mg/gr); contratilidade de músculos papilares isolados (MPI) e mensuração direta da pressão arterial. A atividade adrenal foi avaliada pela razão peso adrenal/ peso corporal (mg/gr) e níveis de 24 horas de corticosterona fecal (CF) no 1º, 5º e 10º dias de tratamento com T3. Resultados: No GH, o ECO mostrou redução dos Volumes Finais Sistólico e Diastólico, Tempos de Ejeção, Relaxamento Isovolumétrico e Diastólico Total, Áreas Sistólicas e Diastólica e razão E/A. Aumentaram a frequência cardíaca, a fração de ejeção e o débito cardíaco. A razão peso corporal/peso do coração foi maior. Da mesma forma, nos MPI, a taxa máxima de degradação da força durante o relaxamento foi maior em todas as concentrações extracelulares de cálcio. Os níveis de pressão arterial sistólica (PAS) foram maiores. (p ≤ 0,05). Por outro lado, não houve diferença na razão peso das adrenais/peso corporal ou níveis de 24 horas de CF. Conclusões: O Hi induz efeitos inotrópicos, cronotrópicos e lusitrópicos positivos no coração através de efeito direto do T3, e aumenta a PAS. Essas alterações não estão correlacionadas com as alterações na atividade adrenal.
Resumo:
In this paper the author describes a very interesting case of union of two homologous chromosomes of the scorpion Tityus bahiensis just by the opposite extremities. The two normal pairs of chromosomes behave as ordinarily, the members of each pair showing at times a slight disturbance in their regular parallelism. The complex chromosome, on the contrary, behaves itself as if it were devoid of kinetochores, that is, it does not orient like normal chromosomes nor reveal any kind of active movement. The fusion of the chromosomes has resulted from terminal breakage at the opposite ends, the correspondig fragments having been found unpaired in a cell in which two pairs of chromosomes were present. Consequently, the compound chromosome, like the normal ones, is provided with a kinetochore at each one of the free ends. Being thus a centric chromosome its behavior, or more exactly, its kinetic inactivity may be compared with that of the monovalents found elsewhere in meioses. It is due o the failure of a partner. The fusion of two homologous chromosomes has transformed them into a new chromosomal unit in whose corresponding parts the ability of pairing was entirely abolished. This result is in full contradiction with the theory of a point-to point attraction between homologous chromosomes attributed to particular power of the genes, since, if genes really exist, being placed in their original loci, they would promote the union side by side of the members of the compound chromosome. If an attraction loci-to-loci should prevail the compound chromosome would be bent as in Fig. 8, C or form a ring similar to the loops observed in the inverted segment of sailvary chromosomes of Drosophila, as represented in the Fig. 8, D and this, in accordance with the order of the loci resulting from an union of corresponding or opposite ends of the fused chromosomes, as indicated in the Fig, 8 A and B. The evidence in hand points to a fusion by non homologous extremities. The expected rings, however, have never been found in metaphase plates. From this fact the author concludes that there is no point-to-point attraction between chromosomes, a conclusion in full agreement with the behavior of Hemipteran chromosomes which, in spite of geing composed of two equivalent halves do not bend in order to adjust the corresponding loci. (Cf. the papers on Hemiptera published by the author in this volume).
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Resumo:
The main object of the present paper consists in giving formulas and methods which enable us to determine the minimum number of repetitions or of individuals necessary to garantee some extent the success of an experiment. The theoretical basis of all processes consists essentially in the following. Knowing the frequency of the desired p and of the non desired ovents q we may calculate the frequency of all possi- ble combinations, to be expected in n repetitions, by expanding the binomium (p-+q)n. Determining which of these combinations we want to avoid we calculate their total frequency, selecting the value of the exponent n of the binomium in such a way that this total frequency is equal or smaller than the accepted limit of precision n/pª{ 1/n1 (q/p)n + 1/(n-1)| (q/p)n-1 + 1/ 2!(n-2)| (q/p)n-2 + 1/3(n-3) (q/p)n-3... < Plim - -(1b) There does not exist an absolute limit of precision since its value depends not only upon psychological factors in our judgement, but is at the same sime a function of the number of repetitions For this reasen y have proposed (1,56) two relative values, one equal to 1-5n as the lowest value of probability and the other equal to 1-10n as the highest value of improbability, leaving between them what may be called the "region of doubt However these formulas cannot be applied in our case since this number n is just the unknown quantity. Thus we have to use, instead of the more exact values of these two formulas, the conventional limits of P.lim equal to 0,05 (Precision 5%), equal to 0,01 (Precision 1%, and to 0,001 (Precision P, 1%). The binominal formula as explained above (cf. formula 1, pg. 85), however is of rather limited applicability owing to the excessive calculus necessary, and we have thus to procure approximations as substitutes. We may use, without loss of precision, the following approximations: a) The normal or Gaussean distribution when the expected frequency p has any value between 0,1 and 0,9, and when n is at least superior to ten. b) The Poisson distribution when the expected frequecy p is smaller than 0,1. Tables V to VII show for some special cases that these approximations are very satisfactory. The praticai solution of the following problems, stated in the introduction can now be given: A) What is the minimum number of repititions necessary in order to avoid that any one of a treatments, varieties etc. may be accidentally always the best, on the best and second best, or the first, second, and third best or finally one of the n beat treatments, varieties etc. Using the first term of the binomium, we have the following equation for n: n = log Riim / log (m:) = log Riim / log.m - log a --------------(5) B) What is the minimun number of individuals necessary in 01der that a ceratin type, expected with the frequency p, may appaer at least in one, two, three or a=m+1 individuals. 1) For p between 0,1 and 0,9 and using the Gaussean approximation we have: on - ó. p (1-p) n - a -1.m b= δ. 1-p /p e c = m/p } -------------------(7) n = b + b² + 4 c/ 2 n´ = 1/p n cor = n + n' ---------- (8) We have to use the correction n' when p has a value between 0,25 and 0,75. The greek letters delta represents in the present esse the unilateral limits of the Gaussean distribution for the three conventional limits of precision : 1,64; 2,33; and 3,09 respectively. h we are only interested in having at least one individual, and m becomes equal to zero, the formula reduces to : c= m/p o para a = 1 a = { b + b²}² = b² = δ2 1- p /p }-----------------(9) n = 1/p n (cor) = n + n´ 2) If p is smaller than 0,1 we may use table 1 in order to find the mean m of a Poisson distribution and determine. n = m: p C) Which is the minimun number of individuals necessary for distinguishing two frequencies p1 and p2? 1) When pl and p2 are values between 0,1 and 0,9 we have: n = { δ p1 ( 1-pi) + p2) / p2 (1 - p2) n= 1/p1-p2 }------------ (13) n (cor) We have again to use the unilateral limits of the Gaussean distribution. The correction n' should be used if at least one of the valors pl or p2 has a value between 0,25 and 0,75. A more complicated formula may be used in cases where whe want to increase the precision : n (p1 - p2) δ { p1 (1- p2 ) / n= m δ = δ p1 ( 1 - p1) + p2 ( 1 - p2) c= m / p1 - p2 n = { b2 + 4 4 c }2 }--------- (14) n = 1/ p1 - p2 2) When both pl and p2 are smaller than 0,1 we determine the quocient (pl-r-p2) and procure the corresponding number m2 of a Poisson distribution in table 2. The value n is found by the equation : n = mg /p2 ------------- (15) D) What is the minimun number necessary for distinguishing three or more frequencies, p2 p1 p3. If the frequecies pl p2 p3 are values between 0,1 e 0,9 we have to solve the individual equations and sue the higest value of n thus determined : n 1.2 = {δ p1 (1 - p1) / p1 - p2 }² = Fiim n 1.2 = { δ p1 ( 1 - p1) + p1 ( 1 - p1) }² } -- (16) Delta represents now the bilateral limits of the : Gaussean distrioution : 1,96-2,58-3,29. 2) No table was prepared for the relatively rare cases of a comparison of threes or more frequencies below 0,1 and in such cases extremely high numbers would be required. E) A process is given which serves to solve two problemr of informatory nature : a) if a special type appears in n individuals with a frequency p(obs), what may be the corresponding ideal value of p(esp), or; b) if we study samples of n in diviuals and expect a certain type with a frequency p(esp) what may be the extreme limits of p(obs) in individual farmlies ? I.) If we are dealing with values between 0,1 and 0,9 we may use table 3. To solve the first question we select the respective horizontal line for p(obs) and determine which column corresponds to our value of n and find the respective value of p(esp) by interpolating between columns. In order to solve the second problem we start with the respective column for p(esp) and find the horizontal line for the given value of n either diretly or by approximation and by interpolation. 2) For frequencies smaller than 0,1 we have to use table 4 and transform the fractions p(esp) and p(obs) in numbers of Poisson series by multiplication with n. Tn order to solve the first broblem, we verify in which line the lower Poisson limit is equal to m(obs) and transform the corresponding value of m into frequecy p(esp) by dividing through n. The observed frequency may thus be a chance deviate of any value between 0,0... and the values given by dividing the value of m in the table by n. In the second case we transform first the expectation p(esp) into a value of m and procure in the horizontal line, corresponding to m(esp) the extreme values om m which than must be transformed, by dividing through n into values of p(obs). F) Partial and progressive tests may be recomended in all cases where there is lack of material or where the loss of time is less importent than the cost of large scale experiments since in many cases the minimun number necessary to garantee the results within the limits of precision is rather large. One should not forget that the minimun number really represents at the same time a maximun number, necessary only if one takes into consideration essentially the disfavorable variations, but smaller numbers may frequently already satisfactory results. For instance, by definition, we know that a frequecy of p means that we expect one individual in every total o(f1-p). If there were no chance variations, this number (1- p) will be suficient. and if there were favorable variations a smaller number still may yield one individual of the desired type. r.nus trusting to luck, one may start the experiment with numbers, smaller than the minimun calculated according to the formulas given above, and increase the total untill the desired result is obtained and this may well b ebefore the "minimum number" is reached. Some concrete examples of this partial or progressive procedure are given from our genetical experiments with maize.
Resumo:
Irish potato tubers imported from Holland and Germany were planted at the Instituto Agronômico Experiment Station, Campinas, in April, 1955. At digging time, in July, 1955, the tubers were found to be injured by nematodes belonging to the genus Ditylenchus. No visible symptoms were found on the plants during the growing season, since the nematodes did not attack the stems. However, prevailing weather conditions from April to July were not favorable for nema activities, with low temperature and rain precipitation. Therefore, it does not seem safe to assume that, as a rule, the nemas do not attack buds and stems, for further observations may reveal such an occurrence, as it has been reported in the literature. The injury was characterized by spots consisting of decaying brown tissue, the nematodes being found mainly between this and the uninjured tissue. Larvae and adults occurred simultaneously. Fourteen different potato varieties were attacked by the nematodes, the percentage of disfigured tubers ranging from 6 (vars. Irene, Barima and Tedria) to 38 (var. Stamm 456). Studies en the morphology cf the parasites disclosed that two different Ditylenchus forms were present, with Apheten-chus sp. and Aphelenchoides sp. associated with them. The writers have not yet drawn a final conclusion about the identification of the Ditylenchi. However, it was clearly seen that no form can be identified either with D. dipsaci or with D. destructor. Both forms have lateral fields made up of 6 incisures, what separates them from D. dipsaci. On the other hand, measurements as well as some details in the organization of the oesophagus make the identification with D. destructor quite impossible. As far as the origin of the parasites is concerned, the fact that they could not be determined either as D. dipsaci or as D. destructor emphasizes the possibility of being two native species, not introduced with the tubers imported.
Resumo:
Com o objetivo de caracterizar a deficiência de boro no mamoeiro (Carica papaya L.) em condições de casa de vegetação e correlacionar com o problema que ocorre em condições de campo, conhecido como "careca do mamoeiro" ou "queda do chapéu", foram instalados dois ensaios. O primeiro foi conduzido em condições de campo no município de Botucatu, SP., em um solo pertencente ao grande grupo Terra Roxa Estruturada e de clima Cf.b.. O segundo ensaio foi conduzido em condições de casa de vegetação e soluções nutritivas. Os autores descrevem os sintomas de deficiência de boro em mamoeiro e correlacionam o problema conhecido como "careca do mamoeiro", com a deficiência de boro.
Resumo:
A presente pesquisa foi conduzida em condições de campo, no município de Botucatu - SP, em um solo pertencente ao grande grupo - Terra Roxa Estruturada e de clima Cf.b. Este trabalho teve como objetivo estudar a marcha de absorção dos seguintes nutrientes: N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, Mo e Zn. Dentre os resultados obtidos constatouse que: a - a absorção de nutrientes pela parte aérea é crescente durante o primeiro ano da cultura, atingindo absorção máxima no décimo segundo mês. b - Em cultura de um ano, a absorção de nutrientes pela parte aérea, por planta, obedece a seguinte ordem: N - 66,7g; K - 62,8g; Ca 24,8g; Mg - 10,3g; S - 7,3g; P - 6,3g; Fe - 229,8 mg; Mn - 149,lmg; Zn - 79,7mg B - 74,2mg; Cu - 20,0mg; Mo - 0,15mg.
Resumo:
Com o intuito de determinar o reinício da atividade ovariana no pós-parto em vacas leiteiras, foi realizado um estudo em uma propriedade particular na região de Rio das Pedras, São Paulo. Durante 12 meses, amostras de leite foram coletadas semanalmente e o teor de progesterona determinado através de radioimunoensaio. Observou-se que 26,6% das vacas permaneceram em anestro e que ocorreram falhas nas observações de cio. A maioria dos animais (61,1%) apresentou atividade ovariana com 31 à 60 dias de pós-parto.
Resumo:
Ecological studies were conducted in the ichthyofauna of Cedro, a small headwater stream located in a degraded area of State of São Paulo, Brazil, situated in the upper Paraná River basin. These are the results of two non-consecutive years observations and collections in two biotopes of that stream: a pool and a rapid. The ecological characteristics studied change in space and time. The present richness of species is high (21 species), nine of which are constant, six accessory and six accidental. The diversity is low (0.69 to 2.38), and the numeric predominance, from one to three species, occurred in both biotopes. The most frequent species are Poecilia reticulata (Peters, 1859) (28.1%), Corydoras cf. aeneus (Gill, 1858) (20.3%) and Hypostomus cf. ancistroides (Ihering, 1911) (19.8%). The density ranges from 0.7 to 19.8 specimens/m³. The similarity index indicates high similarity between the ichthyofauna (45.0% to 95.0%) inside the same or contiguous biotopes. The evenness (0.46 to 1.0) is comparable to those found in similar studies carried out in other streams.
Resumo:
The polychaete composition and distribution within mussel beds were studied in order to assess organic pollution due to domestic sewage in a rocky shore of Mar del Plata (Argentina) during 1997. Four stations and a control site were randomly sampled around the local effluent. Quantitative data on polychaetes, as well as sediment accumulated among mussels and its organic carbon content were measured. Polychaete distribution patterns are related to the organic matter gradient, being Capitella cf. capitata, Neanthes succinea (Frey & Leuckart, 1847) and Boccardia polybranchia (Haswell, 1885) the dominant indicator species close to the effluent. At medial distances, the cirratulids Caulleriella alata (Southern, 1914) and Cirratulus cirratus (Müller, 1776) are very important in abundance. The syllids Syllis prolixa Ehlers, 1901 and S. gracilis Grube, 1840 are distributed along the study area, but dominate at the medial stations and at the control site. The orbiniid Protoariciella uncinata Hartmann-Schröder, 1962 is subdominant at the control station.
Resumo:
Although Brazil encompasses one of the most abundant anuran faunas in the world, quantitative information on anuran ecology and diet are limited, especially in the Northeastern region. We analyzed the diet of six species: Hyla albomarginata, Hyla cf. branneri, Hyla minuta, Phyllomedusa aff. hypochondrialis (Hylidae), Leptodactylus natalensis, and Physalaemus cuvieri (Leptodactylidae) in a temporary pond in a rainforest remnant in Pernambuco, between 1999-2000. We analyzed diet composition, degree of food preference, and seasonal variations in diet. Leptodactylus natalensis and P. cuvieri showed higher diet diversity, whereas H. minuta consumed fewer food items. Insecta, Arachnida, and plants were preferential items for most species. Acari were consumed by all species; Hymenoptera, Odonata, and Coleoptera were also often consumed. A slight increase in diet diversity occurred in the rainy season. The species showed a generalist feeding behaviour, although P. cuvieri consumed Formicidae as major prey item.
Resumo:
Realizaram-se amostragens de pequenos mamíferos em duas bacias hidrográficas do Brasil central pertencentes aos rios Araguaia e Paraná com intuito de descrever a composição de espécies de pequenos mamíferos de hábito florestal e comparar suas distribuições geográficas. Quatorze pontos de coleta foram amostrados, subdivididos em oito na bacia do Rio Paraná e seis na bacia do Rio Araguaia. Foram registradas 20 espécies de pequenos mamíferos na região (oito de marsupiais e 12 de roedores), sendo 16 delas por meio de armadilhas metálicas (5.253 armadilhas-noite) e oito delas por meio de armadilhas de queda (224 baldes-noite), totalizando 161 capturas de 139 indivíduos. A bacia do Rio Paraná apresentou 16 espécies (armadilhas-noite: 3.115; baldes-noite: 104) e a bacia do Araguaia apresentou 11 espécies (armadilhas-noite: 2.138; baldes-noite: 120), sendo que as riquezas foram similares quando aplicado o método da rarefação. Das 20 espécies registradas, sete (35%) ocorreram em ambas as bacias. Apesar da elevada riqueza de espécies amostrada, destacou-se a elevada abundância do marsupial Didelphis albiventris Lund, 1840. As espécies de marsupiais amostradas foram D. albiventris, Caluromys philander (Linnaeus, 1758), Cryptonanus cf. agricolai Voss, Lunde & Jansa, 2005, Gracilinanus agilis (Burmeister, 1854), G. microtarsus (Wagner, 1842), Lutreolina crassicaudata (Desmarest, 1804), Marmosa murina (Linnaeus, 1758), e Philander opossum (Linnaeus, 1758). As espécies de roedores amostradas foram Akodon gr. cursor, Calomys tener (Winge, 1887), Nectomys rattus (Pelzen, 1883), N. squamipes (Brants, 1827), Oecomys bicolor (Tomes, 1860), Oryzomys maracajuensis Langguth & Bonvicino, 2002, Oryzomys cf. marinhus, O. megacephalus (Fischer, 1814), Oligoryzomys fornesi (Massoia, 1973), Oligoryzomys sp., Proechimys longicaudatus (Rengger, 1830) e P. roberti (Thomas, 1901). A ampliação da distribuição de algumas espécies é discutida, assim como aspectos biogeográficos. A Serra dos Caiapós pode ter sido uma barreira geográfica para algumas espécies de pequenos mamíferos em face da retração e expansão das florestas ocorridas no passado.
Resumo:
A influência dos fatores abióticos sobre a disponibilidade de presas e a dieta das espécies de serpentes mais abundantes do Planalto Médio do Rio Grande do Sul, foi estudada em duas áreas: floresta e campo. O trabalho foi desenvolvido utilizando serpentes coletadas com os métodos: procura limitada por tempo, encontros ocasionais, armadilhas de interceptação e queda, e serpentes depositadas na coleção de répteis da Universidade de Passo Fundo. Foram registradas as guildas alimentares das seis espécies mais abundantes: anurófagas (n = 2: Echinanthera cyanopleura (Cope, 1885) e Thamnodynates cf. strigatus (Günther, 1858)); rodentívoras (n = 1: Bothrops alternatus Duméril, Bibron & Duméril, 1854); moluscófagas (n = 1: Tomodon dorsatus Duméril, Bibron & Duméril, 1854) e generalistas (n = 2: Liophis poecilogyrus (Wied-Neuwied, 1825) e Philodryas patagoniensis (Girard, 1858)). Dos fatores abióticos analisados, a abundância de serpentes foi mais relacionada à temperatura máxima (R² = 0,66) e não apresentou relação significativa com a pluviosidade. A abundância de anfíbios apresentou relação positiva com a pluviosidade (R² = 0,54) e não foi significativa com a temperatura mínima. A abundância de serpentes não foi correlacionada com a abundância de anfíbios e roedores.
Resumo:
The helminth communities of silverside, Odontesthes bonariensis (Valenciennes, 1835), from two Argentinean lagoons were studied and compared at component community and infracommunity levels. Nine helminth species were found: five digeneans (Austrodiplostomum cf. mordax, Ascocotyle (Phagicola) cf. diminuta, Ascocotyle sp., Thometrema bonariensis and Saccocoelioides sp.); two nematodes (Contracaecum sp. and Hysterothylacium sp.); one acanthocephalan (Wolffhugelia matercula) and one cestode (Cangatiella macdonaghi). Odontesthes bonariensis is a new host record for five parasite species. Richness, diversity and number of helminths in silversides from Salada Grande lagoon were higher than in those from Lacombe lagoon. This could be related with lagoon size, abundance of mollusks and fish-eating birds, and size and diet of silversides captured in each lagoon. In Salada Grande lagoon the helminth community of silversides was dominated by the allogenic and generalist species A. cf. mordax; while the autogenic and intermediate specialist species C. macdonaghi was dominant in Lacombe lagoon. Host sex did not affect richness, diversity or total abundance, whereas host size was positively correlated with these attributes, except diversity in Salada Grande lagoon.