850 resultados para Open and closed shop
Resumo:
This article describes the design, implementation, and experiences with AcMus, an open and integrated software platform for room acoustics research, which comprises tools for measurement, analysis, and simulation of rooms for music listening and production. Through use of affordable hardware, such as laptops, consumer audio interfaces and microphones, the software allows evaluation of relevant acoustical parameters with stable and consistent results, thus providing valuable information in the diagnosis of acoustical problems, as well as the possibility of simulating modifications in the room through analytical models. The system is open-source and based on a flexible and extensible Java plug-in framework, allowing for cross-platform portability, accessibility and experimentation, thus fostering collaboration of users, developers and researchers in the field of room acoustics.
Resumo:
The quantification of ammonia (NH3) losses from sugarcane straw fertilized with urea can be performed with collectors that recover the NH3 in acid-treated absorbers. Thus, the use of an open NH3 collector with a polytetrafluoroethylene (PTFE)-wrapped absorber is an interesting option since its cost is low, handling easy and microclimatic conditions irrelevant. The aim of this study was to evaluate the efficiency of an open collector for quantifying NH3-N volatilized from urea applied over the sugarcane straw. The experiment was carried out in a sugarcane field located near Piracicaba, Sao Paulo, Brazil. The NH3-N losses were estimated using a semi-open static collector calibrated with N-15 (reference method) and an open collector with an absorber wrapped in PTFE film. Urea was applied to the soil surface in treatments corresponding to rates of 50, 100, 150 and 200 kg ha(-1) N. Applying urea-N fertilizer on sugarcane straw resulted in losses NH3-N up to 24 % of the applied rate. The amount of volatile NH3-N measured in the open and the semi-open static collector did not differ. The effectiveness of the collection system varied non-linearly, with an average value of 58.4 % for the range of 100 to 200 kg ha(-1) of urea-N. The open collector showed significant potential for use; however, further research is needed to verify the suitability of the proposed method.
Resumo:
Background: Exercise programs have proved to be helpful for frail older adults. This study aimed to investigate the effects of an exercise program with a focus on postural control exercises in frail older adults. Method: Twenty-six older adults (76.7 +/- 4.9 years) deemed clinically stable, chosen from the Falls Unit, University Hospital Mutua Terrassa, Barcelona, Spain, participated in this single-group study. Volunteers' postural control was evaluated using the Timed Up and Go test (TUG) and the Guralnik test battery, and their static and dynamic posturography were evaluated using the Synapsys Posturography System (R). These evaluations were performed before and after the intervention program, which included an educational session and two weekly 1-hour sessions over an 8-week period of stretching exercises, proprioception, balance, and motor coordination. Data were analyzed using the Student's t-test or the Wilcoxon test, with a significance level of 5%. Results: The TUG and Guralnik tests did not show significant differences. Concerning static posturography, there was improvement in the base of support (P = 0.006), anteroposterior displacement with eyes open (P = 0.02) and closed (P = 0.03), and the total amplitude of the center of pressure with eyes closed (P = 0.02). Regarding dynamic posturography, a decrease of the oscillation speed in the anteroposterior direction (P = 0.01) was observed in individuals with their eyes open. Conclusion: The program used in this study was safe and was able to promote some improvement in postural control, especially in the anteroposterior direction and in the base of support. However, it is noteworthy that further improvements could be obtained from a program of longer duration and greater frequency.
Resumo:
OBJECTIVES: The consequences of breast hypertrophy have been described based on the alteration of body mass distribution, leading to an impact on psychological and physical aspects. The principles of motor control suggest that breast hypertrophy can lead to sensorimotor alterations and the impairment of body balance due to postural misalignment. The aim of this study is to evaluate the postural control of women with breast hypertrophy under different sensory information conditions. METHOD: This cross-sectional study included 14 women with breast hypertrophy and 14 without breast hypertrophy, and the mean ages of the groups were 39 +/- 15 years and 39 +/- 16 years, respectively. A force platform was used to assess the sensory systems that contribute to postural control: somatosensory, visual and vestibular. Four postural conditions were sequentially tested: eyes open and fixed platform, eyes closed and fixed platform, eyes open and mobile platform, and eyes closed and mobile platform. The data were processed, and variables related to the center of pressure were analyzed for each condition. The Kruskal-Wallis test was used to compare the conditions between the groups for the area of center of pressure displacement and the velocity of center of pressure displacement in the anterior-posterior and medial-lateral directions. The alpha level error was set at 0.05. RESULTS: Women with breast hypertrophy presented an area that was significantly higher for three out of four conditions and a higher velocity of center of pressure displacement in the anterior-posterior direction under two conditions: eyes open and mobile platform and eyes closed and mobile platform. CONCLUSIONS: Women with breast hypertrophy have altered postural control, which was demonstrated by the higher area and velocity of center of pressure displacement.
Resumo:
The objective of this study was to investigate the influence of the obesity and handgrip strength on the static balance of active older women in the opened and closed eyes conditions. Thirty one women aged from 65 to 75 years (16 eutrophic and 15 obese) were evaluated. Mean age and BMI of the eutrophic women were, respectively, 68.3 +/- 2.7 years and 23.4 +/- 1.6kg/m(2), and of the obese women were 69.1 +/- 2.7 years and 33.5 +/- 3kg/m(2). Handgrip strength was evaluated using a dynamometer (JAMAR). A tridimensional sensors system was used to evaluate the static postural balance. The tests were performed for 90 seconds, with eyes opened and closed. The mean handgrip strength of the eutrophic women was 25.1 +/- 4.6kgf and of the obese women was 24.8 +/- 5.2kgf, (p>0,05). Significant differences between groups were only observed in the maximum displacement with opened eyes (p=0,04) and closed eyes(p<0,01). There was no correlation between the maximum displacement neither with the BMI or the handgrip strength. The present study showed smaller a-p displacement in obese than in eutrophic women, with major statistic difference in the eyes closed condition. In the present study, the handgrip strength did not influence the static balance, however the obesity was a determinant factor for the smaller a-p displacement of the active older women.
Resumo:
Background: Surfing is a sport that has become considerably popular, which increased interest in research about the aspects that can influence on the performance of these athletes, such as injuries, aerobic fitness and reaction time. Due to the ever-changing environment and high instability required for surfing, the surfers must develop some neuromuscular skills (agility, balance, muscle strength and flexibility) to acquire better performance in this modality. Nevertheless, there are still few scientific studies concerned about the investigation of these motor skills in surfing. Objective: The aim of this study was to evaluate the balance control in surfers compared to practitioners of other physical activities. Methods: Participants remained on a force platform while performing tasks involving visual deprivation (eyes open or closed) and somatosensory disturbance (steady surface or use of foam), with covariation of experimental conditions. The following variables were analyzed: speed and root mean square (RMS) displacement of the center of pressure in the anteroposterior (AP) and mediolateral (ML) directions. Results: The results showed no difference between groups during the experimental conditions, that is to say, both surfers and the control group varied over the conditions of eyes closed and on foam. Conclusion: Although surfing requires the surfer to have great balance control, the results did not reveal a relationship between this sport and better performance in balance control. However, we must consider the small sample size and the fact that this sport requires dynamic balance, while the study evaluated static balance.
Resumo:
The supraclavicular island flap has been widely used in head and neck reconstruction, providing an alternative to the traditional techniques like regional or free flaps, mainly because of its thin skin island tissue and reliable vascularity. Head and neck patients who require large reconstructions usually present poor clinical and healing conditions. An early experience using this flap for late-stage head and neck tumour treatment is reported. Forty-seven supraclavicular artery flaps were used to treat head and neck oncologic defects after cutaneous, intraoral and pharyngeal tumour resections. Dissection time, complications, donor and reconstructed area outcomes were assessed. The mean time for harvesting the flaps was 50 min by the senior author. All donor sites were closed primarily. Three cases of laryngopharyngectomy reconstruction developed a small controlled (salivary) leak that was resolved with conservative measures. Small or no strictures were detected on radiologic swallowing examinations and all patients regained normal swallowing function. Five patients developed donor site dehiscence. These wounds were treated with regular dressing until healing was complete. There were four distal flap necroses in this series. These necroses were debrided and closed primarily. The supraclavicular flap is pliable for head and neck oncologic reconstruction in late-stage patients. High-risk patients and modified radical neck dissection are not contraindications for its use. The absence of the need to isolate the pedicle offers quick and reliable harvesting. The arc of rotation on the base of the neck provides adequate length for pharyngeal, oral lining and to reconstruct the middle and superior third of the face. (C) 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Resumo:
The quantification of ammonia (NH3) losses from sugarcane straw fertilized with urea can be performed with collectors that recover the NH3 in acid-treated absorbers. Thus, the use of an open NH3 collector with a polytetrafluoroethylene (PTFE)-wrapped absorber is an interesting option since its cost is low, handling easy and microclimatic conditions irrelevant. The aim of this study was to evaluate the efficiency of an open collector for quantifying NH3-N volatilized from urea applied over the sugarcane straw. The experiment was carried out in a sugarcane field located near Piracicaba, São Paulo, Brazil. The NH3-N losses were estimated using a semi-open static collector calibrated with 15N (reference method) and an open collector with an absorber wrapped in PTFE film. Urea was applied to the soil surface in treatments corresponding to rates of 50, 100, 150 and 200 kg ha-1 N. Applying urea-N fertilizer on sugarcane straw resulted in losses NH3-N up to 24 % of the applied rate. The amount of volatile NH3-N measured in the open and the semi-open static collector did not differ. The effectiveness of the collection system varied non-linearly, with an average value of 58.4 % for the range of 100 to 200 kg ha-1 of urea-N. The open collector showed significant potential for use; however, further research is needed to verify the suitability of the proposed method.
Resumo:
Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.
Resumo:
Technology advances in recent years have dramatically changed the way users exploit contents and services available on the Internet, by enforcing pervasive and mobile computing scenarios and enabling access to networked resources almost from everywhere, at anytime, and independently of the device in use. In addition, people increasingly require to customize their experience, by exploiting specific device capabilities and limitations, inherent features of the communication channel in use, and interaction paradigms that significantly differ from the traditional request/response one. So-called Ubiquitous Internet scenario calls for solutions that address many different challenges, such as device mobility, session management, content adaptation, context-awareness and the provisioning of multimodal interfaces. Moreover, new service opportunities demand simple and effective ways to integrate existing resources into new and value added applications, that can also undergo run-time modifications, according to ever-changing execution conditions. Despite service-oriented architectural models are gaining momentum to tame the increasing complexity of composing and orchestrating distributed and heterogeneous functionalities, existing solutions generally lack a unified approach and only provide support for specific Ubiquitous Internet aspects. Moreover, they usually target rather static scenarios and scarcely support the dynamic nature of pervasive access to Internet resources, that can make existing compositions soon become obsolete or inadequate, hence in need of reconfiguration. This thesis proposes a novel middleware approach to comprehensively deal with Ubiquitous Internet facets and assist in establishing innovative application scenarios. We claim that a truly viable ubiquity support infrastructure must neatly decouple distributed resources to integrate and push any kind of content-related logic outside its core layers, by keeping only management and coordination responsibilities. Furthermore, we promote an innovative, open, and dynamic resource composition model that allows to easily describe and enforce complex scenario requirements, and to suitably react to changes in the execution conditions.
Resumo:
Here, we present the adaptation and optimization of (i) the solvothermal and (ii) the metal-organic chemical vapor deposition (MOCVD) approach as simple methods for the high-yield synthesis of MQ2 (M=Mo, W, Zr; Q = O, S) nanoparticles. Extensive characterization was carried out using X-ray diffraction (XRD), scanning and transmission electron micros¬copy (SEM/TEM) combined with energy dispersive X-ray analysis (EDXA), Raman spectroscopy, thermal analyses (DTA/TG), small angle X-ray scattering (SAXS) and BET measurements. After a general introduction to the state of the art, a simple route to nanostructured MoS2 based on the decomposition of the cluster-based precursor (NH4)2Mo3S13∙xH2O under solvothermal conditions (toluene, 653 K) is presented. Solvothermal decomposition results in nanostructured material that is distinct from the material obtained by decomposition of the same precursor in sealed quartz tubes at the same temperature. When carried out in the presence of the surfactant cetyltrimethyl¬ammonium bromide (CTAB), the decomposition product exhibits highly disordered MoS2 lamellae with high surface areas. The synthesis of WS2 onion-like nanoparticles by means of a single-step MOCVD process is discussed. Furthermore, the results of the successful transfer of the two-step MO¬CVD based synthesis of MoQ2 nanoparticles (Q = S, Se), comprising the formation of amorphous precursor particles and followed by the formation of fullerene-like particles in a subsequent annealing step to the W-S system, are presented. Based on a study of the temperature dependence of the reactions a set of conditions for the formation of onion-like structures in a one-step reaction could be derived. The MOCVD approach allows a selective synthesis of open and filled fullerene-like chalcogenide nanoparticles. An in situ heating stage transmission electron microscopy (TEM) study was employed to comparatively investigate the growth mechanism of MoS2 and WS2 nanoparticles obtained from MOCVD upon annealing. Round, mainly amorphous particles in the pristine sample trans¬form to hollow onion-like particles upon annealing. A significant difference between both compounds could be demonstrated in their crystallization conduct. Finally, the results of the in situ hea¬ting experiments are compared to those obtained from an ex situ annealing process under Ar. Eventually, a low temperature synthesis of monodisperse ZrO2 nanoparticles with diameters of ~ 8 nm is introduced. Whereas the solvent could be omitted, the synthesis in an autoclave is crucial for gaining nano-sized (n) ZrO2 by thermal decomposition of Zr(C2O4)2. The n-ZrO2 particles exhibits high specific surface areas (up to 385 m2/g) which make them promising candidates as catalysts and catalyst supports. Co-existence of m- and t-ZrO2 nano-particles of 6-9 nm in diameter, i.e. above the critical particle size of 6 nm, demonstrates that the particle size is not the only factor for stabilization of the t-ZrO2 modification at room temperature. In conclusion, synthesis within an autoclave (with and without solvent) and the MOCVD process could be successfully adapted to the synthesis of MoS2, WS2 and ZrO2 nanoparticles. A comparative in situ heating stage TEM study elucidated the growth mechanism of MoS2 and WS2 fullerene-like particles. As the general processes are similar, a transfer of this synthesis approach to other layered transition metal chalcogenide systems is to be expected. Application of the obtained nanomaterials as lubricants (MoS2, WS2) or as dental filling materials (ZrO2) is currently under investigation.
Resumo:
This thesis presents a comparative developmental study of inflorescences and focuses on the production of the terminal flower (TF). Morphometric attributes of inflorescence meristems (IM) were obtained throughout the ontogeny of inflorescence buds with the aim of describing possible spatial constraints that could explain the failure in developing the TF. The study exposes the inflorescence ontogeny of 20 species from five families of the Eudicots (Berberidaceae, Papaveraceae-Fumarioideae, Rosaceae, Campanulaceae and Apiaceae) in which 745 buds of open (i.e. without TF) and closed (i.e. with TF) inflorescences were observed under the scanning electron microscope.rnThe study shows that TFs appear on IMs which are 2,75 (se = 0,38) times larger than the youngest lateral reproductive primordium. The shape of these IMs is characterized by a leaf arc (phyllotactic attribute) of 91,84° (se = 7,32) and a meristematic elevation of 27,93° (se = 5,42). IMs of open inflorescences show a significant lower relative surface, averaging 1,09 (se=0,26) times the youngest primordium size, which suggests their incapacity for producing TFs. The relative lower size of open IMs is either a condition throughout the complete ontogeny (‘open I’) or a result from the drastic reduction of the meristematic surface after flower segregation (‘open II’). rnIt is concluded that a suitable bulge configuration of the IM is a prerequisite for TF formation. Observations in the TF-facultative species Daucus carota support this view, as the absence of the TF in certain umbellets is correlated with a reduction of their IM dimensions. A review of literature regarding histological development of IMs and genetic regulation of inflorescences suggests that in ‘open I’ inflorescences, the histological composition and molecular activity at the tip of the IM could impede the TF differentiation. On the other side, in ‘open II’ inflorescences, the small final IM bulge could represent a spatial constraint that hinders the differentiation of the TF. The existence of two distinct kinds of ontogenies of open inflorescences suggests two ways in which the loss of the TF could have occurred in the course of evolution.rn
Resumo:
The Internet of Things (IoT) is the next industrial revolution: we will interact naturally with real and virtual devices as a key part of our daily life. This technology shift is expected to be greater than the Web and Mobile combined. As extremely different technologies are needed to build connected devices, the Internet of Things field is a junction between electronics, telecommunications and software engineering. Internet of Things application development happens in silos, often using proprietary and closed communication protocols. There is the common belief that only if we can solve the interoperability problem we can have a real Internet of Things. After a deep analysis of the IoT protocols, we identified a set of primitives for IoT applications. We argue that each IoT protocol can be expressed in term of those primitives, thus solving the interoperability problem at the application protocol level. Moreover, the primitives are network and transport independent and make no assumption in that regard. This dissertation presents our implementation of an IoT platform: the Ponte project. Privacy issues follows the rise of the Internet of Things: it is clear that the IoT must ensure resilience to attacks, data authentication, access control and client privacy. We argue that it is not possible to solve the privacy issue without solving the interoperability problem: enforcing privacy rules implies the need to limit and filter the data delivery process. However, filtering data require knowledge of how the format and the semantics of the data: after an analysis of the possible data formats and representations for the IoT, we identify JSON-LD and the Semantic Web as the best solution for IoT applications. Then, this dissertation present our approach to increase the throughput of filtering semantic data by a factor of ten.
Resumo:
Joseph Nicolas Cugnot built the first primitive car in 1769 and approximately one hundred year later the first automotive race took place. Thanks to this, for the first time the aerodynamics principles began to be applied to cars. The aerodynamic study of a car is important to improve the performance on the road, or on the track. It purposely enhances the stability in the turns and increases the maximum velocity. However, it is also useful, decrease the fuel consumption, in order to reduce the pollution. Given that cars are a very complex body, the aerodynamic study cannot be conducted following an analytical method, but it is possible, in general, to choose between two different approaches: the numerical or the experimental one. The results of numerical studies depend on the computers’ potential and on the method use to implement the mathematical model. Today, the best way to perform an aerodynamic study is still experimental, which means that in the first phase of the design process the study is performed in a wind tunnel and in later phases directly on track. The automotive wind tunnels are singular mainly due to the test chamber, which typically contains a ground simulation system. The test chamber can have different types of walls: open walls, closed walls, adaptive walls or slotted walls. The best solution is to use the slotted walls because they minimize the interference between the walls and the streamlines, the interaction between the flow and the environment, and also to contain the overall costs. Furthermore, is necessary minimize the boundary layer at the walls, without accelerating the flow, in order to provide the maximum section of homogeneous flow. This thesis aims at redefining the divergent angle of the Dallara Automobili S.P.A. wind tunnel’s walls, in order to improve the overall homogeneity. To perform this study it was necessary to acquire the pressure data of the boundary layer, than it was created the profile of the boundary layer velocity and, to minimize the experimental errors, it was calculated the displacement thickness. The results obtained shows, even if the instrument used to the experiment was not the best one, that the boundary layer thickness could be minor in case of a low diffusion angle. So it is convenient to perform another experiment with a most sensitive instrument to verified what is the better wall configuration.
Resumo:
OBJECTIVE: To retrospectively evaluate the craniofacial morphology of children with a complete unilateral cleft lip and palate treated with a 1-stage simultaneous cleft repair performed in the first year of life. METHODS: Cephalograms and extraoral profile photographs of 61 consecutively treated patients (42 boys, 19 girls) who had been operated on at 9.2 (SD, 2.0) months by a single experienced surgeon were analyzed at 11.4 (SD, 1.5) years. The noncleft control group comprised 81 children (43 boys and 38 girls) of the same ethnicity at the age of 10.4 (SD, 0.5) years. RESULTS: In children with cleft, the maxilla and mandible were retrusive; the palatal and mandibular planes were more open, and sagittal maxillomandibular relationship was less favorable in comparison to noncleft control subjects. Soft tissues in patients with cleft reflected retrusive morphology of hard tissues--subnasal and supramental regions were less convex, profile was flatter, and nasolabial angle was more acute relative to those of the control subjects. CONCLUSIONS: Craniofacial morphology after 1-stage repair was deviated in comparison with noncleft control subjects. However, the degree of deviation was comparable with that found after treatment with alternative surgical protocols.