822 resultados para Occupational accidents
Resumo:
Natural hazards affecting industrial installations could directly or indirectly cause an accident or series of accidents with serious consequences for the environment and for human health. Accidents initiated by a natural hazard or disaster which result in the release of hazardous materials are commonly referred to as Natech (Natural Hazard Triggering a Technological Disaster) accidents. The conditions brought about by these kinds of events are particularly problematic, the presence of the natural event increases the probability of exposition and causes consequences more serious than standard technological accidents. Despite a growing body of research and more stringent regulations for the design and operation of industrial activities, Natech accidents remain a threat. This is partly due to the absence of data and dedicated risk-assessment methodologies and tools. Even the Seveso Directives for the control of risks due to major accident hazards do not include any specific impositions regarding the management of Natech risks in the process industries. Among the few available tools there is the European Standard EN 62305, which addresses generic industrial sites, requiring to take into account the possibility of lightning and to select the appropriate protection measures. Since it is intended for generic industrial installations, this tool set the requirements for the design, the construction and the modification of structures, and is thus mainly oriented towards conventional civil building. A first purpose of this project is to study the effects and the consequences on industrial sites of lightning, which is the most common adverse natural phenomenon in Europe. Lightning is the cause of several industrial accidents initiated by natural causes. The industrial sectors most susceptible to accidents triggered by lightning is the petrochemical one, due to the presence of atmospheric tanks (especially floating roof tanks) containing flammable vapors which could be easily ignited by a lightning strike or by lightning secondary effects (as electrostatic and electromagnetic pulses or ground currents). A second purpose of this work is to implement the procedure proposed by the European Standard on a specific kind of industrial plant, i.e. on a chemical factory, in order to highlight the critical aspects of this implementation. A case-study plant handling flammable liquids was selected. The application of the European Standard allowed to estimate the incidence of lightning activity on the total value of the default release frequency suggested by guidelines for atmospheric storage tanks. Though it has become evident that the European Standard does not introduce any parameters explicitly pointing out the amount of dangerous substances which could be ignited or released. Furthermore the parameters that are proposed to describe the characteristics of the structures potentially subjected to lightning strikes are insufficient to take into account the specific features of different chemical equipment commonly present in chemical plants.
Resumo:
The so called cascading events, which lead to high-impact low-frequency scenarios are rising concern worldwide. A chain of events result in a major industrial accident with dreadful (and often unpredicted) consequences. Cascading events can be the result of the realization of an external threat, like a terrorist attack a natural disaster or of “domino effect”. During domino events the escalation of a primary accident is driven by the propagation of the primary event to nearby units, causing an overall increment of the accident severity and an increment of the risk associated to an industrial installation. Also natural disasters, like intense flooding, hurricanes, earthquake and lightning are found capable to enhance the risk of an industrial area, triggering loss of containment of hazardous materials and in major accidents. The scientific community usually refers to those accidents as “NaTechs”: natural events triggering industrial accidents. In this document, a state of the art of available approaches to the modelling, assessment, prevention and management of domino and NaTech events is described. On the other hand, the relevant work carried out during past studies still needs to be consolidated and completed, in order to be applicable in a real industrial framework. New methodologies, developed during my research activity, aimed at the quantitative assessment of domino and NaTech accidents are presented. The tools and methods provided within this very study had the aim to assist the progress toward a consolidated and universal methodology for the assessment and prevention of cascading events, contributing to enhance safety and sustainability of the chemical and process industry.
Resumo:
The chemical industry has to face safety problems linked to the hazards of chemicals and the risks posed by the plants where they are handled. However, their transport may cause significant risk values too: it’s not totally possible to avoid the occurrence of accidents. This work is focused on the emergency response to railway accidents involving hazardous materials, that is what has to be done once they happen to limit their consequences. A first effort has been devoted to understand the role given to this theme within legislations: it has been found out that often it’s not even taken into account. Exceptionally a few countries adopt guidelines suggesting how to plan the response, who is appointed to intervene and which actions should be taken first. An investigation has been made to define the tools available for the responders, with attention on the availability of chemical-specific safety distances. It has emerged that the ERG book adopted by some American countries has suggestions and the Belgian legislation too establishes criteria to evaluate these distances. An analysis has been conducted then on the most recent accidents occurred worldwide, to understand how the response was performed and which safety distances were adopted. These values were compared with the numbers reported by the ERG book and the results of two devoted software tools for consequence analysis of accidental spills scenarios. This comparison has shown that there are differences between them and that a more standardized approach is necessary. This is why further developments of the topic should focus on promoting uniform procedures for emergency response planning and on a worldwide adoption of a guidebook with suggestions about actions to reduce consequences and about safety distances, determined following finer researches. For this aim, the development of a detailed database of hazardous materials transportation accidents could be useful.
Resumo:
Road traffic accidents (RTA) are an important cause of premature death. We examined socio-demographic and geographical determinants of RTA mortality in Switzerland by linking 2000 census data to RTA mortality records 2000-2005 (ICD-10 codes V00-V99). Data from 5.5 million residents aged 18-94 years, 1744 study areas, and 1620 RTA deaths were analyzed, including 978 deaths (60.4%) in motor vehicle occupants, 254 (15.7%) in motorcyclists, 107 (6.6%) in cyclists, and 259 (16.0%) in pedestrians. Weibull survival models and Bayesian methods were used to calculate hazard ratios (HR), and standardized mortality ratios (SMR) across study areas. Adjusted HR comparing women with men ranged from 0.04 (95% CI 0.02-0.07) in motorcyclists to 0.43 (95% CI 0.32-0.56) in pedestrians. There was a u-shaped relationship with age in motor vehicle occupants and motorcyclists. In cyclists and pedestrians, mortality increased after age 55 years. Mortality was higher in individuals with primary education (HR 1.53; 95% CI 1.29-1.81), and higher in single (HR 1.24; 95% CI 1.05-1.46), widowed (HR 1.31; 95% CI 1.05-1.65) and divorced individuals (HR 1.62; 95% CI 1.33-1.97), compared to persons with tertiary education or married persons. The association with education was particularly strong for pedestrians (HR 1.87; 95% CI 1.20-2.91). RTA mortality increased with decreasing population density of study areas for motor vehicle occupants (test for trend p<0.0001) and motorcyclists (p=0.0021) but not for cyclists (p=0.39) or pedestrians (p=0.29). SMR standardized for socio-demographic and geographical variables ranged from 82 to 190. Prevention efforts should aim to reduce inequities across socio-demographic and educational groups, and across geographical areas, with interventions targeted at high-risk groups and areas, and different traffic users, including pedestrians.
Resumo:
To investigate the prevalence and characteristics of cerebrovascular accidents (CVA) in a large population of adults with congenital heart disease (CHD).
Resumo:
OBJECTIVE: Occupational leg symptoms are highly prevalent in the general population and impair the psychic state of health. We investigated hairdressers, a cohort exposed to prolonged standing during work, in a randomized crossover trial. We hypothesized that hairdressers wearing low-strength compression hosiery would benefit from less leg volume increase and discomfort. METHODS: One hundred and eight hairdressers were randomized to wear medical compression stockings (MCS; 15-20 mmHg) in a crossover study. The effect of MCS on symptoms and on lower leg volume was compared with no compression treatment. Symptoms were assessed with a comprehensive questionnaire, categorized using factor analysis with varimax rotation and correlated with leg volume changes. RESULTS: Wearing MCS reduced the symptom score for pain and feelings of swelling (range 0-4) by an average of 0.22 (12%, P < 0.001). Sleep disturbance, feeling of unattractive legs and depressiveness improved with MCS compared with no MCS. Subjects initially obliged to refrain from wearing stockings showed a significant decrease of pain and feelings of swelling as well (by 0.10 [6%], P = 0.015). Wearing MCS was associated with a decrease of lower leg volume by an average of 19 mL (P < 0.001), with preference in older hairdressers (P < 0.001). The effects of wearing MCS on symptoms and on leg volume were not correlated with each other. CONCLUSIONS: Individuals working in a standing profession experience leg pain, feelings of swelling, heaviness and various other disturbing feelings. These symptoms can be alleviated by wearing low-strength MCS.
Resumo:
Cerebrovascular accidents (CVA) are considered among the most serious adverse events after transcatheter aortic valve implantation (TAVI). The objective of the present study was to evaluate the frequency and timing of CVA after TAVI and to investigate the impact on clinical outcomes within 30 days of the procedure.