722 resultados para OUTBREAKS
Resumo:
Human activities are fundamentally altering the chemistry of the world's oceans. Ocean acidification (OA) is occurring against a background of warming and an increasing occurrence of disease outbreaks, posing a significant threat to marine organisms, communities, and ecosystems. In the current study, 1H NMR spectroscopy was used to investigate the response of the blue mussel, Mytilus edulis, to a 90-day exposure to reduced seawater pH and increased temperature, followed by a subsequent pathogenic challenge. Analysis of the metabolome revealed significant differences between male and female organisms. Furthermore, males and females are shown to respond differently to environmental stress. While males were significantly affected by reduced seawater pH, increased temperature, and a bacterial challenge, it was only a reduction in seawater pH that impacted females. Despite impacting males and females differently, stressors seem to act via a generalized stress response impacting both energy metabolism and osmotic balance in both sexes. This study therefore has important implications for the interpretation of metabolomic data in mussels, as well as the impact of environmental stress in marine invertebrates in general.
Resumo:
Outbreaks of crown-of-thorns starfish (COTS), Acanthaster planci, contribute to major declines of coral reef ecosystems throughout the Indo-Pacific. As the oceans warm and decrease in pH due to increased anthropogenic CO2 production, coral reefs are also susceptible to bleaching, disease and reduced calcification. The impacts of ocean acidification and warming may be exacerbated by COTS predation, but it is not known how this major predator will fare in a changing ocean. Because larval success is a key driver of population outbreaks, we investigated the sensitivities of larval A. planci to increased temperature (2-4 °C above ambient) and acidification (0.3-0.5 pH units below ambient) in flow-through cross-factorial experiments (3 temperature × 3 pH/pCO2 levels). There was no effect of increased temperature or acidification on fertilization or very early development. Larvae reared in the optimal temperature (28 °C) were the largest across all pH treatments. Development to advanced larva was negatively affected by the high temperature treatment (30 °C) and by both experimental pH levels (pH 7.6, 7.8). Thus, planktonic life stages of A. planci may be negatively impacted by near-future global change. Increased temperature and reduced pH had an additive negative effect on reducing larval size. The 30 °C treatment exceeded larval tolerance regardless of pH. As 30 °C sea surface temperatures may become the norm in low latitude tropical regions, poleward migration of A. planci may be expected as they follow optimal isotherms. In the absence of acclimation or adaptation, declines in low latitude populations may occur. Poleward migration will be facilitated by strong western boundary currents, with possible negative flow-on effects on high latitude coral reefs. The contrasting responses of the larvae of A. planci and those of its coral prey to ocean acidification and warming are considered in context with potential future change in tropical reef ecosystems.
Resumo:
One hypothesis for the success of invasive species is reduced pathogen burden, resulting from a release from infections or high immunological fitness (low immunopathology) of invaders. Despite of strong selection exerted on the host, the evolutionary response of invaders to newly acquired pathogens has rarely been considered. The two independent and genetically distinct invasions of the Pacific oyster Crassostrea gigas into the North Sea represent an ideal model system to study fast evolutionary responses of invasive populations. By exposing both invasion sources to ubiquitous and phylogenetically diverse pathogens (Vibrio spp.) we demonstrate that within a few generations hosts adapted to sympatric pathogen communities. However, this local adaptation only became apparent in selective environments, i.e. at elevated temperatures reflecting patterns of disease outbreaks in natural populations. Resistance against sympatric and allopatric Vibrio spp. strains was dominantly inherited in crosses between both invasion sources, resulting in an overall higher resistance of admixed individuals than pure lines. Therefore we suggest that a simple genetic resistance mechanism of the host is matched to a common virulence mechanism shared by local Vibrio strains. This combination might have facilitated a fast evolutionary response that can explain another dimension of why invasive species can be so successful in newly invaded ranges.
Resumo:
Pakistan is geographically situated between China and the Gulf. In order to balance its strategic position against the major security threat of India, Pakistan formed a special and stable strategic alliance with China against common threats since the period of the cold war even though the two countries have neither a political ideology nor political system in common. On the other hand Pakistan established another special relation with Saudi Arabia on the basis of Islamic identity. With its expanding economic capacity, China proposed a project by the name of "new silk road economic corridor" with the intention of expanding and multiplying trade routes with the Middle East and Europe. Within this framework Pakistan is expected to expand the role of an alternative land route that connects the Gulf and China for use if unfavorable emergencies occur in the Malacca route. However, the continuous political uncertainty in Afghanistan after the pullout of US-NATO fighting forces at the end of 2014 and sporadic outbreaks of terrorist acts by Pakistan Taliban in Pakistan have increased China's anxiety regarding Uyghur issues at home. Avoiding military options for the moment, China is trying to find ways to play an active role in the security issues of Afghanistan with help from Pakistan if available. On the other hand, it is noteworthy that the Pakistani government formed in the general election of 2008 completed its full term and transferred authority to the newly elected government in 2013, something never observed before in Pakistan's history. Coincidently, in Afghanistan the presidential election was carried out peacefully in 2014 in spite of the Taliban threat. Although it is too early to make any definite conclusion, constitutional processes, in spite of their defects, reflected to some extent wishes for normal life of the people of Pakistan and Afghanistan who were disgusted with weak governance and the prevalence of terrorism.
Resumo:
The need for a better quantification of the influence of Saharan dust transport processes on the air quality modelling in the Mediterranean basin led to the formulation of a dust emission module (DEM) integrated into the Air Quality Risk Assessment System for the Iberian Peninsula (SERCA). This paper is focused on the formulation of DEM based on the GOCART aerosol model, along with its integration and execution into the air quality model. It also addresses the testing of the module and its evaluation by contrasting results against satellite products such as MODIS and CALIPSO and ground-level observations of aerosol optical thickness (AOT) and concentration levels of PM10 for different periods in July 2007. DEM was found capable of reproducing the spatial (horizontal and vertical) and temporal profiles of Saharan dust outbreaks into the Mediterranean basin and the Atlantic coast of Africa. Moreover, it was observed that its combination with CMAQ increased the correlation degree between observed and modelled PM10 concentrations at the selected monitoring locations. DEM also enhanced CMAQ capabilities to reproduce observed AOT, although significant underestimations remain. The implementation of CMAQ + DEM succeeded in capturing Saharan dust transport into the Iberian Peninsula, with contributions up to 25 and 14 μg m−3 in 1 h and 24 h average PM10 respectively. The general improvement of total PM10 predictions in Spain are however moderate. The analysis of model performance for the main PM components points out that remaining PM10 underestimation is due to dust local sources missing in the inventories and misrepresentation of organic aerosol processes, which constitutes the main areas for future improvement of CMAQ capabilities to simulate particulate matter within SERCA.
Resumo:
Natural cement was patented in 1796 but it didn’t arrive in Spain until 1835. No one knows exactly where the production started in Spain, because it emerged independently at the same time in many places. Most of these outbreaks are concentrated in the north and northwest of Spain: Basque Country (Zumaya and Rezola) and Catalonia (San Celoní and San Juan de las Abadesas).Natural cement was extensively used to decorate historical buildings during the nineteenth and beginning of twentieth century in Madrid. It was the building material which realised the architects and builders dreams of mass-produced cast elements in a wide variety of styles. Its arrival replaced traditional materials that were used previously (lime, gypsum and hydraulic limes). However, its use was not extended in time, and soon it was replaced by the use of artificial Portland cements. During 20th century this building material disappeared from use. What remains is it’s memory, in thousands and thousands of “stone witnesses” in our cities. Final properties of the cement largely depend on raw materials used and its combustion temperature. However, it was characterised by an easily implementation on facade masonry, fast-setting (about 15 minutes), good resistance , an agreeable structural consistency and colour.This article aims to show first steps, evolution and decay of Natural Cement Industry in Spain and its application in Madrid.
Resumo:
The rugose colony variant of Vibrio cholerae O1, biotype El Tor, is shown to produce an exopolysaccharide, EPSETr, that confers chlorine resistance and biofilm-forming capacity. EPSETr production requires a chromosomal locus, vps, that contains sequences homologous to carbohydrate biosynthesis genes of other bacterial species. Mutations within this locus yield chlorine-sensitive, smooth colony variants that are biofilm deficient. The biofilm-forming properties of EPSETr may enable the survival of V. cholerae O1 within environmental aquatic habitats between outbreaks of human disease.
Resumo:
Ancient septicemic plague epidemics were reported to have killed millions of people for 2 millenniums. However, confident diagnosis of ancient septicemia solely on the basis of historical clinical observations is not possible. The lack of suitable infected material has prevented direct demonstration of ancient septicemia; thus, the history of most infections such as plague remains hypothetical. The durability of dental pulp, together with its natural sterility, makes it a suitable material on which to base such research. We hypothesized that it would be a lasting refuge for Yersinia pestis, the plague agent. DNA extracts were made from the dental pulp of 12 unerupted teeth extracted from skeletons excavated from 16th and 18th century French graves of persons thought to have died of plague (“plague teeth”) and from 7 ancient negative control teeth. PCRs incorporating ancient DNA extracts and primers specific for the human β-globin gene demonstrated the absence of inhibitors in these preparations. The incorporation of primers specific for Y. pestis rpoB (the RNA polymerase β-subunit-encoding gene) and the recognized virulence-associated pla (the plasminogen activator-encoding gene) repeatedly yielded products that had a nucleotide sequence indistinguishable from that of modern day isolates of the bacterium. The specific pla sequence was obtained from 6 of 12 plague skeleton teeth but 0 of 7 negative controls (P < 0.034, Fisher exact test). A nucleic acid-based confirmation of ancient plague was achieved for historically identified victims, and we have confirmed the presence of the disease at the end of 16th century in France. Dental pulp is an attractive target in the quest to determine the etiology of septicemic illnesses detected in ancient corpses. Molecular techniques could be applied to this material to resolve historical outbreaks.
Resumo:
Conclusions have differed in studies that have compared vaccine efficacy in groups receiving influenza vaccine for the first time to efficacy in groups vaccinated more than once. For example, the Hoskins study [Hoskins, T. W., Davis, J. R., Smith, A. J., Miller, C. L. & Allchin, A. (1979) Lancet i, 33–35] concluded that repeat vaccination was not protective in the long term, whereas the Keitel study [Keitel, W. A., Cate, T. R., Couch, R. B., Huggins, L. L. & Hess, K. R. (1997) Vaccine 15, 1114–1122] concluded that repeat vaccination provided continual protection. We propose an explanation, the antigenic distance hypothesis, and test it by analyzing seven influenza outbreaks that occurred during the Hoskins and Keitel studies. The hypothesis is that variation in repeat vaccine efficacy is due to differences in antigenic distances among vaccine strains and between the vaccine strains and the epidemic strain in each outbreak. To test the hypothesis, antigenic distances were calculated from historical hemagglutination inhibition assay tables, and a computer model of the immune response was used to predict the vaccine efficacy of individuals given different vaccinations. The model accurately predicted the observed vaccine efficacies in repeat vaccinees relative to the efficacy in first-time vaccinees (correlation 0.87). Thus, the antigenic distance hypothesis offers a parsimonious explanation of the differences between and within the Hoskins and Keitel studies. These results have implications for the selection of influenza vaccine strains, and also for vaccination strategies for other antigenically variable pathogens that might require repeated vaccination.
Resumo:
It has long been known that cholera outbreaks can be initiated when Vibrio cholerae, the bacterium that causes cholera, is present in drinking water in sufficient numbers to constitute an infective dose, if ingested by humans. Outbreaks associated with drinking or bathing in unpurified river or brackish water may directly or indirectly depend on such conditions as water temperature, nutrient concentration, and plankton production that may be favorable for growth and reproduction of the bacterium. Although these environmental parameters have routinely been measured by using water samples collected aboard research ships, the available data sets are sparse and infrequent. Furthermore, shipboard data acquisition is both expensive and time-consuming. Interpolation to regional scales can also be problematic. Although the bacterium, V. cholerae, cannot be sensed directly, remotely sensed data can be used to infer its presence. In the study reported here, satellite data were used to monitor the timing and spread of cholera. Public domain remote sensing data for the Bay of Bengal were compared directly with cholera case data collected in Bangladesh from 1992–1995. The remote sensing data included sea surface temperature and sea surface height. It was discovered that sea surface temperature shows an annual cycle similar to the cholera case data. Sea surface height may be an indicator of incursion of plankton-laden water inland, e.g., tidal rivers, because it was also found to be correlated with cholera outbreaks. The extensive studies accomplished during the past 25 years, confirming the hypothesis that V. cholerae is autochthonous to the aquatic environment and is a commensal of zooplankton, i.e., copepods, when combined with the findings of the satellite data analyses, provide strong evidence that cholera epidemics are climate-linked.
Resumo:
The recent outbreaks of Escherichia coli 0157-associated food poisoning have focused attention on the virulence determinants of E. coli. Here, it is reported that single base substitutions in the fnr gene encoding the oxygen-responsive transcription regulator FNR (fumarate and nitrate reduction regulator) are sufficient to confer a hemolytic phenotype on E. coli K12, the widely used laboratory strain. The mechanism involves enhancing the expression of a normally dormant hemolysin gene (hlyE) located in the E. coli chromosome. The mutations direct single amino acid substitutions in the activating regions (AR1 and AR3) of FNR that contact RNA polymerase. It is concluded that altering a resident transcription regulator, or acquisition of a competent heterologous regulator, could generate a pool of hemolytic, and therefore more virulent, strains of E. coli in nature.
Resumo:
Humans transformed Western Atlantic coastal marine ecosystems before modern ecological investigations began. Paleoecological, archeological, and historical reconstructions demonstrate incredible losses of large vertebrates and oysters from the entire Atlantic coast. Untold millions of large fishes, sharks, sea turtles, and manatees were removed from the Caribbean in the 17th to 19th centuries. Recent collapses of reef corals and seagrasses are due ultimately to losses of these large consumers as much as to more recent changes in climate, eutrophication, or outbreaks of disease. Overfishing in the 19th century reduced vast beds of oysters in Chesapeake Bay and other estuaries to a few percent of pristine abundances and promoted eutrophication. Mechanized harvesting of bottom fishes like cod set off a series of trophic cascades that eliminated kelp forests and then brought them back again as fishers fished their way down food webs to small invertebrates. Lastly, but most pervasively, mechanized harvesting of the entire continental shelf decimated large, long-lived fishes and destroyed three-dimensional habitats built up by sessile corals, bryozoans, and sponges. The universal pattern of losses demonstrates that no coastal ecosystem is pristine and few wild fisheries are sustainable along the entire Western Atlantic coast. Reconstructions of ecosystems lost only a century or two ago demonstrate attainable goals of establishing large and effective marine reserves if society is willing to pay the costs. Historical reconstructions provide a new scientific framework for manipulative experiments at the ecosystem scale to explore the feasibility and benefits of protection of our living coastal resources.
Resumo:
Coral reefs, with their millions of species, have changed profoundly because of the effects of people, and will continue to do so for the foreseeable future. Reefs are subject to many of the same processes that affect other human-dominated ecosystems, but some special features merit emphasis: (i) Many dominant reef builders spawn eggs and sperm into the water column, where fertilization occurs. They are thus particularly vulnerable to Allee effects, including potential extinction associated with chronic reproductive failure. (ii) The corals likely to be most resistant to the effects of habitat degradation are small, short-lived “weedy” corals that have limited dispersal capabilities at the larval stage. Habitat degradation, together with habitat fragmentation, will therefore lead to the establishment of genetically isolated clusters of inbreeding corals. (iii) Increases in average sea temperatures by as little as 1°C, a likely result of global climate change, can cause coral “bleaching” (the breakdown of coral–algal symbiosis), changes in symbiont communities, and coral death. (iv) The activities of people near reefs increase both fishing pressure and nutrient inputs. In general, these processes favor more rapidly growing competitors, often fleshy seaweeds, and may also result in explosions of predator populations. (v) Combinations of stress appear to be associated with threshold responses and ecological surprises, including devastating pathogen outbreaks. (vi) The fossil record suggests that corals as a group are more likely to suffer extinctions than some of the groups that associate with them, whose habitat requirements may be less stringent.
Resumo:
A fundamental shift to a total system approach for crop protection is urgently needed to resolve escalating economic and environmental consequences of combating agricultural pests. Pest management strategies have long been dominated by quests for “silver bullet” products to control pest outbreaks. However, managing undesired variables in ecosystems is similar to that for other systems, including the human body and social orders. Experience in these fields substantiates the fact that therapeutic interventions into any system are effective only for short term relief because these externalities are soon “neutralized” by countermoves within the system. Long term resolutions can be achieved only by restructuring and managing these systems in ways that maximize the array of “built-in” preventive strengths, with therapeutic tactics serving strictly as backups to these natural regulators. To date, we have failed to incorporate this basic principle into the mainstream of pest management science and continue to regress into a foot race with nature. In this report, we establish why a total system approach is essential as the guiding premise of pest management and provide arguments as to how earlier attempts for change and current mainstream initiatives generally fail to follow this principle. We then draw on emerging knowledge about multitrophic level interactions and other specific findings about management of ecosystems to propose a pivotal redirection of pest management strategies that would honor this principle and, thus, be sustainable. Finally, we discuss the potential immense benefits of such a central shift in pest management philosophy.
Resumo:
The recent intensification of agriculture, and the prospects of future intensification, will have major detrimental impacts on the nonagricultural terrestrial and aquatic ecosystems of the world. The doubling of agricultural food production during the past 35 years was associated with a 6.87-fold increase in nitrogen fertilization, a 3.48-fold increase in phosphorus fertilization, a 1.68-fold increase in the amount of irrigated cropland, and a 1.1-fold increase in land in cultivation. Based on a simple linear extension of past trends, the anticipated next doubling of global food production would be associated with approximately 3-fold increases in nitrogen and phosphorus fertilization rates, a doubling of the irrigated land area, and an 18% increase in cropland. These projected changes would have dramatic impacts on the diversity, composition, and functioning of the remaining natural ecosystems of the world, and on their ability to provide society with a variety of essential ecosystem services. The largest impacts would be on freshwater and marine ecosystems, which would be greatly eutrophied by high rates of nitrogen and phosphorus release from agricultural fields. Aquatic nutrient eutrophication can lead to loss of biodiversity, outbreaks of nuisance species, shifts in the structure of food chains, and impairment of fisheries. Because of aerial redistribution of various forms of nitrogen, agricultural intensification also would eutrophy many natural terrestrial ecosystems and contribute to atmospheric accumulation of greenhouse gases. These detrimental environmental impacts of agriculture can be minimized only if there is much more efficient use and recycling of nitrogen and phosphorus in agroecosystems.