925 resultados para OPTICAL PERFORMANCE MONITORING


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CoastColour project Round Robin (CCRR) project (http://www.coastcolour.org) funded by the European Space Agency (ESA) was designed to bring together a variety of reference datasets and to use these to test algorithms and assess their accuracy for retrieving water quality parameters. This information was then developed to help end-users of remote sensing products to select the most accurate algorithms for their coastal region. To facilitate this, an inter-comparison of the performance of algorithms for the retrieval of in-water properties over coastal waters was carried out. The comparison used three types of datasets on which ocean colour algorithms were tested. The description and comparison of the three datasets are the focus of this paper, and include the Medium Resolution Imaging Spectrometer (MERIS) Level 2 match-ups, in situ reflectance measurements and data generated by a radiative transfer model (HydroLight). The datasets mainly consisted of 6,484 marine reflectance associated with various geometrical (sensor viewing and solar angles) and sky conditions and water constituents: Total Suspended Matter (TSM) and Chlorophyll-a (CHL) concentrations, and the absorption of Coloured Dissolved Organic Matter (CDOM). Inherent optical properties were also provided in the simulated datasets (5,000 simulations) and from 3,054 match-up locations. The distributions of reflectance at selected MERIS bands and band ratios, CHL and TSM as a function of reflectance, from the three datasets are compared. Match-up and in situ sites where deviations occur are identified. The distribution of the three reflectance datasets are also compared to the simulated and in situ reflectances used previously by the International Ocean Colour Coordinating Group (IOCCG, 2006) for algorithm testing, showing a clear extension of the CCRR data which covers more turbid waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper proposes a model for estimation of perceived video quality in IPTV, taking as input both video coding and network Quality of Service parameters. It includes some fitting parameters that depend mainly on the information contents of the video sequences. A method to derive them from the Spatial and Temporal Information contents of the sequences is proposed. The model may be used for near real-time monitoring of IPTV video quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current nanometer technologies suffer within-die parameter uncertainties, varying workload conditions, aging, and temperature effects that cause a serious reduction on yield and performance. In this scenario, monitoring, calibration, and dynamic adaptation become essential, demanding systems with a collection of multi purpose monitors and exposing the need for light-weight monitoring networks. This paper presents a new monitoring network paradigm able to perform an early prioritization of the information. This is achieved by the introduction of a new hierarchy level, the threshing level. Targeting it, we propose a time-domain signaling scheme over a single-wire that minimizes the network switching activity as well as the routing requirements. To validate our approach, we make a thorough analysis of the architectural trade-offs and expose two complete monitoring systems that suppose an area improvement of 40% and a power reduction of three orders of magnitude compared to previous works.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The coagulation of milk is the fundamental process in cheese-making, based on a gel formation as consequence of physicochemical changes taking place in the casein micelles, the monitoring the whole process of milk curd formation is a constant preoccupation for dairy researchers and cheese companies (Lagaude et al., 2004). In addition to advances in composition-based applications of near infrared spectroscopy (NIRS), innovative uses of this technology are pursuing dynamic applications that show promise, especially in regard to tracking a sample in situ during food processing (Bock and Connelly, 2008). In this way the literature describes cheese making process applications of NIRS for curd cutting time determination, which conclude that NIRS would be a suitable method of monitoring milk coagulation, as shown i.e. the works published by Fagan et al. (Fagan et al., 2008; Fagan et al., 2007), based in the use of the commercial CoAguLite probe (with a LED at 880nm and a photodetector for light reflectance detection).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current nanometer technologies are subjected to several adverse effects that seriously impact the yield and performance of integrated circuits. Such is the case of within-die parameters uncertainties, varying workload conditions, aging, temperature, etc. Monitoring, calibration and dynamic adaptation have appeared as promising solutions to these issues and many kinds of monitors have been presented recently. In this scenario, where systems with hundreds of monitors of different types have been proposed, the need for light-weight monitoring networks has become essential. In this work we present a light-weight network architecture based on digitization resource sharing of nodes that require a time-to-digital conversion. Our proposal employs a single wire interface, shared among all the nodes in the network, and quantizes the time domain to perform the access multiplexing and transmit the information. It supposes a 16% improvement in area and power consumption compared to traditional approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tradicionalmente, la fabricación de materiales compuestos de altas prestaciones se lleva a cabo en autoclave mediante la consolidación de preimpregnados a través de la aplicación simultánea de altas presiones y temperatura. Las elevadas presiones empleadas en autoclave reducen la porosidad de los componentes garantizando unas buenas propiedades mecánicas. Sin embargo, este sistema de fabricación conlleva tiempos de producción largos y grandes inversiones en equipamiento lo que restringe su aplicación a otros sectores alejados del sector aeronáutico. Este hecho ha generado una creciente demanda de sistemas de fabricación alternativos al autoclave. Aunque estos sistemas son capaces de reducir los tiempos de producción y el gasto energético, por lo general, dan lugar a materiales con menores prestaciones mecánicas debido a que se reduce la compactación del material al aplicar presiones mas bajas y, por tanto, la fracción volumétrica de fibras, y disminuye el control de la porosidad durante el proceso. Los modelos numéricos existentes permiten conocer los fundamentos de los mecanismos de crecimiento de poros durante la fabricación de materiales compuestos de matriz polimérica mediante autoclave. Dichos modelos analizan el comportamiento de pequeños poros esféricos embebidos en una resina viscosa. Su validez no ha sido probada, sin embargo, para la morfología típica observada en materiales compuestos fabricados fuera de autoclave, consistente en poros cilíndricos y alargados embebidos en resina y rodeados de fibras continuas. Por otro lado, aunque existe una clara evidencia experimental del efecto pernicioso de la porosidad en las prestaciones mecánicas de los materiales compuestos, no existe información detallada sobre la influencia de las condiciones de procesado en la forma, fracción volumétrica y distribución espacial de los poros en los materiales compuestos. Las técnicas de análisis convencionales para la caracterización microestructural de los materiales compuestos proporcionan información en dos dimensiones (2D) (microscopía óptica y electrónica, radiografía de rayos X, ultrasonidos, emisión acústica) y sólo algunas son adecuadas para el análisis de la porosidad. En esta tesis, se ha analizado el efecto de ciclo de curado en el desarrollo de los poros durante la consolidación de preimpregnados Hexply AS4/8552 a bajas presiones mediante moldeo por compresión, en paneles unidireccionales y multiaxiales utilizando tres ciclos de curado diferentes. Dichos ciclos fueron cuidadosamente diseñados de acuerdo a la caracterización térmica y reológica de los preimpregnados. La fracción volumétrica de poros, su forma y distribución espacial se analizaron en detalle mediante tomografía de rayos X. Esta técnica no destructiva ha demostrado su capacidad para analizar la microestructura de materiales compuestos. Se observó, que la porosidad depende en gran medida de la evolución de la viscosidad dinámica a lo largo del ciclo y que la mayoría de la porosidad inicial procedía del aire atrapado durante el apilamiento de las láminas de preimpregnado. En el caso de los laminados multiaxiales, la porosidad también se vio afectada por la secuencia de apilamiento. En general, los poros tenían forma cilíndrica y se estaban orientados en la dirección de las fibras. Además, la proyección de la población de poros a lo largo de la dirección de la fibra reveló la existencia de una estructura celular de un diámetro aproximado de 1 mm. Las paredes de las celdas correspondían con regiones con mayor densidad de fibra mientras que los poros se concentraban en el interior de las celdas. Esta distribución de la porosidad es el resultado de una consolidación no homogenea. Toda esta información es crítica a la hora de optimizar las condiciones de procesado y proporcionar datos de partida para desarrollar herramientas de simulación de los procesos de fabricación de materiales compuestos fuera de autoclave. Adicionalmente, se determinaron ciertas propiedades mecánicas dependientes de la matriz termoestable con objeto de establecer la relación entre condiciones de procesado y las prestaciones mecánicas. En el caso de los laminados unidireccionales, la resistencia interlaminar depende de la porosidad para fracciones volumétricas de poros superiores 1%. Las mismas tendencias se observaron en el caso de GIIc mientras GIc no se vio afectada por la porosidad. En el caso de los laminados multiaxiales se evaluó la influencia de la porosidad en la resistencia a compresión, la resistencia a impacto a baja velocidad y la resistencia a copresión después de impacto. La resistencia a compresión se redujo con el contenido en poros, pero éste no influyó significativamente en la resistencia a compresión despues de impacto ya que quedó enmascarada por otros factores como la secuencia de apilamiento o la magnitud del daño generado tras el impacto. Finalmente, el efecto de las condiciones de fabricación en el proceso de compactación mediante moldeo por compresión en laminados unidireccionales fue simulado mediante el método de los elementos finitos en una primera aproximación para simular la fabricación de materiales compuestos fuera de autoclave. Los parámetros del modelo se obtuvieron mediante experimentos térmicos y reológicos del preimpregnado Hexply AS4/8552. Los resultados obtenidos en la predicción de la reducción de espesor durante el proceso de consolidación concordaron razonablemente con los resultados experimentales. Manufacturing of high performance polymer-matrix composites is normally carried out by means of autoclave using prepreg tapes stacked and consolidated under the simultaneous application of pressure and temperature. High autoclave pressures reduce the porosity in the laminate and ensure excellent mechanical properties. However, this manufacturing route is expensive in terms of capital investment and processing time, hindering its application in many industrial sectors. This fact has driven the demand of alternative out-of-autoclave processing routes. These techniques claim to produce composite parts faster and at lower cost but the mechanical performance is also reduced due to the lower fiber content and to the higher porosity. Corrient numerical models are able to simulate the mechanisms of void growth in polymer-matrix composites processed in autoclave. However these models are restricted to small spherical voids surrounded by a viscous resin. Their validity is not proved for long cylindrical voids in a viscous matrix surrounded by aligned fibers, the standard morphology observed in out-of-autoclave composites. In addition, there is an experimental evidence of the detrimental effect of voids on the mechanical performance of composites but, there is detailed information regarding the influence of curing conditions on the actual volume fraction, shape and spatial distribution of voids within the laminate. The standard techniques of microstructural characterization of composites (optical or electron microscopy, X-ray radiography, ultrasonics) provide information in two dimensions and are not always suitable to determine the porosity or void population. Moreover, they can not provide 3D information. The effect of curing cycle on the development of voids during consolidation of AS4/8552 prepregs at low pressure by compression molding was studied in unidirectional and multiaxial panels. They were manufactured using three different curing cycles carefully designed following the rheological and thermal analysis of the raw prepregs. The void volume fraction, shape and spatial distribution were analyzed in detail by means of X-ray computed microtomography, which has demonstrated its potential for analyzing the microstructural features of composites. It was demonstrated that the final void volume fraction depended on the evolution of the dynamic viscosity throughout the cycle. Most of the initial voids were the result of air entrapment and wrinkles created during lay-up. Differences in the final void volume fraction depended on the processing conditions for unidirectional and multiaxial panels. Voids were rod-like shaped and were oriented parallel to the fibers and concentrated in channels along the fiber orientation. X-ray computer tomography analysis of voids along the fiber direction showed a cellular structure with an approximate cell diameter of 1 mm. The cell walls were fiber-rich regions and porosity was localized at the center of the cells. This porosity distribution within the laminate was the result of inhomogeneous consolidation. This information is critical to optimize processing parameters and to provide inputs for virtual testing and virtual processing tools. In addition, the matrix-controlled mechanical properties of the panels were measured in order to establish the relationship between processing conditions and mechanical performance. The interlaminar shear strength (ILSS) and the interlaminar toughness (GIc and GIIc) were selected to evaluate the effect of porosity on the mechanical performance of unidirectional panels. The ILSS was strongly affected by the porosity when the void contents was higher than 1%. The same trends were observed in the case of GIIc while GIc was insensitive to the void volume fraction. Additionally, the mechanical performance of multiaxial panels in compression, low velocity impact and compression after impact (CAI) was measured to address the effect of processing conditions. The compressive strength decreased with porosity and ply-clustering. However, the porosity did not influence the impact resistance and the coompression after impact strength because the effect of porosity was masked by other factors as the damage due to impact or the laminate lay-up. Finally, the effect of the processing conditions on the compaction behavior of unidirectional AS4/8552 panels manufactured by compression moulding was simulated using the finite element method, as a first approximation to more complex and accurate models for out-of autoclave curing and consolidation of composite laminates. The model parameters were obtained from rheological and thermo-mechanical experiments carried out in raw prepreg samples. The predictions of the thickness change during consolidation were in reasonable agreement with the experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for a better quantification of the influence of Saharan dust transport processes on the air quality modelling in the Mediterranean basin led to the formulation of a dust emission module (DEM) integrated into the Air Quality Risk Assessment System for the Iberian Peninsula (SERCA). This paper is focused on the formulation of DEM based on the GOCART aerosol model, along with its integration and execution into the air quality model. It also addresses the testing of the module and its evaluation by contrasting results against satellite products such as MODIS and CALIPSO and ground-level observations of aerosol optical thickness (AOT) and concentration levels of PM10 for different periods in July 2007. DEM was found capable of reproducing the spatial (horizontal and vertical) and temporal profiles of Saharan dust outbreaks into the Mediterranean basin and the Atlantic coast of Africa. Moreover, it was observed that its combination with CMAQ increased the correlation degree between observed and modelled PM10 concentrations at the selected monitoring locations. DEM also enhanced CMAQ capabilities to reproduce observed AOT, although significant underestimations remain. The implementation of CMAQ + DEM succeeded in capturing Saharan dust transport into the Iberian Peninsula, with contributions up to 25 and 14 μg m−3 in 1 h and 24 h average PM10 respectively. The general improvement of total PM10 predictions in Spain are however moderate. The analysis of model performance for the main PM components points out that remaining PM10 underestimation is due to dust local sources missing in the inventories and misrepresentation of organic aerosol processes, which constitutes the main areas for future improvement of CMAQ capabilities to simulate particulate matter within SERCA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, spacial agencies have shown a growing interest in optical wireless as an alternative to wired and radio-frequency communications. The use of these techniques for intra-spacecraft communications reduces the effect of take-off acceleration and vibrations on the systems by avoiding the need for rugged connectors and provides a significant mass reduction. Diffuse transmission also eases the design process as terminals can be placed almost anywhere without a tight planification to ensure the proper system behaviour. Previous studies have compared the performance of radio-frequency and infrared optical communications. In an intra-satellite environment optical techniques help reduce EMI related problems, and their main disadvantages - multipath dispersion and the need for line-of-sight - can be neglected due to the reduced cavity size. Channel studies demonstrate that the effect of the channel can be neglected in small environments if data bandwidth is lower than some hundreds of MHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase-sensitive optical time-domain reflectometry (?OTDR) is a simple and effective tool allowing the distributed monitoring of vibrations along single-mode fibers. We show in this Letter that modulation instability (MI) can induce a position-dependent signal fading in long-range ?OTDR over conventional optical fibers. This fading leads to a complete masking of the interference signal recorded at certain positions and therefore to a sensitivity loss at these positions. We illustrate this effect both theoretically and experimentally. While this effect is detrimental in the context of distributed vibration analysis using ?OTDR, we also believe that the technique provides a clear and insightful way to evidence the Fermi?Pasta?Ulam recurrence associated with the MI process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A complete simulation of the transmission performance for Equalized Holographic ROADM (Reconfigurable Optical Add-Drop Multiplexer) designs is presented in this paper. These devices can address several wavelengths from the input to different output fibres, according to the holograms stored in a SLM (Spatial Light Modulator), where all the outputs are equalized in power. All combinations of the input wavelengths are possible at the different output fibres. To simulate the transmission performance of the EH-ROADM, a software program, from Optiwave, has been used. The correspondence between physical blocks of the device (grating, SLM, lens...) and those simulated in the program (filters, losses, splitters...) has been defined in order to obtain a close agreement between the theoretical transmission performance and the simulated one. To complete the review about Equalized Holographic ROADMs some guidelines about its design have been done.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to have a cost-effective CPV system, two key issues must be ensured: high concentration factor and high tolerance. The novel concentrator we are presenting, the dome-shaped Fresnel-Köhler, can widely fulfill these two and other essential issues in a CPV module. This concentrator is based on two previous successful CPV designs: the FK concentrator with a flat Fresnel lens and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The concentrator has shown outstanding simulation results, achieving an effective concentration-acceptance product (CAP) value of 0.72, and an optical efficiency of 85% on-axis (no anti-reflective coating has been used). Moreover, Köhler integration provides good irradiance uniformity on the cell surface and low spectral aberration of this irradiance. This ensures an optimal performance of the solar cell, maximizing its efficiency. Besides, the dome-shaped FK shows optimal results for very compact designs, especially in the f/0.7-1.0 range. The dome-shaped Fresnel-Köhler concentrator, natural and enhanced evolution of the flat FK concentrator, is a cost-effective CPV optical design, mainly due to its high tolerances. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work evaluates a spline-based smoothing method applied to the output of a glucose predictor. Methods:Our on-line prediction algorithm is based on a neural network model (NNM). We trained/validated the NNM with a prediction horizon of 30 minutes using 39/54 profiles of patients monitored with the Guardian® Real-Time continuous glucose monitoring system The NNM output is smoothed by fitting a causal cubic spline. The assessment parameters are the error (RMSE), mean delay (MD) and the high-frequency noise (HFCrms). The HFCrms is the root-mean-square values of the high-frequency components isolated with a zero-delay non-causal filter. HFCrms is 2.90±1.37 (mg/dl) for the original profiles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variabilities associated with CMOS evolution affect the yield and performance of current digital designs. FPGAs, which are widely used for fast prototyping and implementation of digital circuits, also suffer from these issues. Proactive approaches start to appear to achieve self-awareness and dynamic adaptation of these devices. To support these techniques we propose the employment of a multi-purpose sensor network. This infrastructure, through adequate use of configuration and automation tools, is able to obtain relevant data along the life cycle of an FPGA. This is realised at a very reduced cost, not only in terms of area or other limited resources, but also regarding the design effort required to define and deploy the measuring infrastructure. Our proposal has been validated by measuring inter-die and intra-die variability in different FPGA families.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is now an emerging need for an efficient modeling strategy to develop a new generation of monitoring systems. One method of approaching the modeling of complex processes is to obtain a global model. It should be able to capture the basic or general behavior of the system, by means of a linear or quadratic regression, and then superimpose a local model on it that can capture the localized nonlinearities of the system. In this paper, a novel method based on a hybrid incremental modeling approach is designed and applied for tool wear detection in turning processes. It involves a two-step iterative process that combines a global model with a local model to take advantage of their underlying, complementary capacities. Thus, the first step constructs a global model using a least squares regression. A local model using the fuzzy k-nearest-neighbors smoothing algorithm is obtained in the second step. A comparative study then demonstrates that the hybrid incremental model provides better error-based performance indices for detecting tool wear than a transductive neurofuzzy model and an inductive neurofuzzy model.