895 resultados para OPTICAL DIELECTRIC FUNCTION
Resumo:
Abstract Cloud computing service emerged as an essential component of the Enterprise {IT} infrastructure. Migration towards a full range and large-scale convergence of Cloud and network services has become the current trend for addressing requirements of the Cloud environment. Our approach takes the infrastructure as a service paradigm to build converged virtual infrastructures, which allow offering tailored performance and enable multi-tenancy over a common physical infrastructure. Thanks to virtualization, new exploitation activities of the physical infrastructures may arise for both transport network and Data Centres services. This approach makes network and Data Centres’ resources dedicated to Cloud Computing to converge on the same flexible and scalable level. The work presented here is based on the automation of the virtual infrastructure provisioning service. On top of the virtual infrastructures, a coordinated operation and control of the different resources is performed with the objective of automatically tailoring connectivity services to the Cloud service dynamics. Furthermore, in order to support elasticity of the Cloud services through the optical network, dynamic re-planning features have been provided to the virtual infrastructure service, which allows scaling up or down existing virtual infrastructures to optimize resource utilisation and dynamically adapt to users’ demands. Thus, the dynamic re-planning of the service becomes key component for the coordination of Cloud and optical network resource in an optimal way in terms of resource utilisation. The presented work is complemented with a use case of the virtual infrastructure service being adopted in a distributed Enterprise Information System, that scales up and down as a function of the application requests.
Resumo:
BACKGROUND Sodium channel NaV1.5 underlies cardiac excitability and conduction. The last 3 residues of NaV1.5 (Ser-Ile-Val) constitute a PDZ domain-binding motif that interacts with PDZ proteins such as syntrophins and SAP97 at different locations within the cardiomyocyte, thus defining distinct pools of NaV1.5 multiprotein complexes. Here, we explored the in vivo and clinical impact of this motif through characterization of mutant mice and genetic screening of patients. METHODS AND RESULTS To investigate in vivo the regulatory role of this motif, we generated knock-in mice lacking the SIV domain (ΔSIV). ΔSIV mice displayed reduced NaV1.5 expression and sodium current (INa), specifically at the lateral myocyte membrane, whereas NaV1.5 expression and INa at the intercalated disks were unaffected. Optical mapping of ΔSIV hearts revealed that ventricular conduction velocity was preferentially decreased in the transversal direction to myocardial fiber orientation, leading to increased anisotropy of ventricular conduction. Internalization of wild-type and ΔSIV channels was unchanged in HEK293 cells. However, the proteasome inhibitor MG132 rescued ΔSIV INa, suggesting that the SIV motif is important for regulation of NaV1.5 degradation. A missense mutation within the SIV motif (p.V2016M) was identified in a patient with Brugada syndrome. The mutation decreased NaV1.5 cell surface expression and INa when expressed in HEK293 cells. CONCLUSIONS Our results demonstrate the in vivo significance of the PDZ domain-binding motif in the correct expression of NaV1.5 at the lateral cardiomyocyte membrane and underline the functional role of lateral NaV1.5 in ventricular conduction. Furthermore, we reveal a clinical relevance of the SIV motif in cardiac disease.
Resumo:
In this paper, a new cruciform donor–acceptor molecule 2,2'-((5,5'-(3,7-dicyano-2,6-bis(dihexylamino)benzo[1,2-b:4,5-b']difuran-4,8-diyl)bis(thiophene-5,2-diyl))bis (methanylylidene))dimalononitrile (BDFTM) is reported. The compound exhibits both remarkable solid-state red emission and p-type semiconducting behavior. The dual functions of BDFTM are ascribed to its unique crystal structure, in which there are no intermolecular face-to-face π–π interactions, but the molecules are associated by intermolecular CN…π and H-bonding interactions. Firstly, BDFTM exhibits aggregation-induced emission; that is, in solution, it is almost non-emissive but becomes significantly fluorescent after aggregation. The emission quantum yield and average lifetime are measured to be 0.16 and 2.02 ns, respectively. Crystalline microrods and microplates of BDFTM show typical optical waveguiding behaviors with a rather low optical loss coefficient. Moreover, microplates of BDFTM can function as planar optical microcavities which can confine the emitted photons by the reflection at the crystal edges. Thin films show an air-stable p-type semiconducting property with a hole mobility up to 0.0015 cm2V−1s−1. Notably, an OFET with a thin film of BDFTM is successfully utilized for highly sensitive and selective detection of H2S gas (down to ppb levels).
Resumo:
The Astronomical Institute of the University of Bern (AIUB) is conducting several search campaigns for space debris using optical sensors. The debris objects are discovered during systematic survey observations. In general, the result of a discovery consists in only a short observation arc, or tracklet, which is used to perform a first orbit determination in order to be able to observe t he object again in subsequent follow-up observations. The additional observations are used in the orbit improvement process to obtain accurate orbits to be included in a catalogue. In order to obtain the most accurate orbit within the time available it is necessary to optimize the follow-up observations strategy. In this paper an in‐depth study, using simulations and covariance analysis, is performed to identify the optimal sequence of follow-up observations to obtain the most accurate orbit propagation to be used for the space debris catalogue maintenance. The main factors that determine the accuracy of the results of an orbit determination/improvement process are: tracklet length, number of observations, type of orbit, astrometric error of the measurements, time interval between tracklets, and the relative position of the object along its orbit with respect to the observing station. The main aim of the covariance analysis is to optimize the follow-up strategy as a function of the object-observer geometry, the interval between follow-up observations and the shape of the orbit. This an alysis can be applied to every orbital regime but particular attention was dedicated to geostationary, Molniya, and geostationary transfer orbits. Finally the case with more than two follow-up observations and the influence of a second observing station are also analyzed.
Resumo:
The Ca2+-binding protein calmodulin (CaM) is a key transducer of Ca2+ oscillations by virtue of its ability to bind Ca 2+ selectively and then interact specifically with a large number of downstream enzymes and proteins. It remains unclear whether Ca2+ -dependent signaling alone can activate the full range of Ca 2+/CaM regulated processes or whether other regulatory schemes in the cell exist that allow specific targeting of CaM to subsets of Ca 2+/CaM binding sites or regions of the cell. Here we investigate the possibility that alterations of the availability of CaM may serve as a potential cellular mechanism for regulating the activation of CaM-dependent targets. By utilizing sensitive optical techniques with high spatial and temporal resolution, we examine the intracellular dynamics of CaM signaling at a resolution previously unattainable. After optimizing and characterizing both the optical methods and fluorescently labeled probes for intracellular measurements, the diffusion of CaM in the cytoplasm of HEK293 cells was analyzed. It was discovered that the diffusion characteristics of CaM are similar to that of a comparably sized inert molecule. Independent manipulation of experimental parameters, including increases in total concentrations of CaM and intracellular Ca2+ levels, did not change the diffusion of CaM in the cytoplasm. However, changes in diffusion were seen when the concentration of Ca2+/CaM-binding targets was increased in conjunction with elevated Ca2+. This indicates that CaM is not normally limiting for the activation of Ca 2+/CaM-dependent enzymes in HEK293 cells but reveals that the ratio of CaM to CaM-dependent targets is a potential mechanism for changing CaM availability. Next we considered whether cellular compartmentalization may act to regulate concentrations of available Ca2+/CaM in hippocampal neurons. We discovered changes in diffusion parameters of CaM under elevated Ca2+ conditions in the soma, neurite and nucleus which suggest that either the composition of cytoplasm is different in these compartments and/or they are composed of unique families of CaM-binding proteins. Finally, we return to the HEK293 cell and for the first time directly show the intracellular binding of CaM and CaMKII, an important target for CaM critical for neuronal function and plasticity. Furthermore, we analyzed the complex binding stoichiometry of this molecular interaction in the basal, activated and autophosphorylated states of CaMKII and determined the impact of this binding on CaM availability in the cell. Overall these results demonstrate that regulation of CaM availability is a viable cellular mechanism for regulating the output of CaM-dependent processes and that this process is tuned to the specific functional needs of a particular cell type and subcellular compartment. ^
Resumo:
We explore the near-field concentration properties of dielectric spheroidal scatterers with sizes close to the wavelength, using an analytical separation-of-variables method. Such particles act as mesoscopic lenses whose physical parameters are optimized here for maximum scattered light enhancement in photovoltaic applications.
Resumo:
A novel formulation for the surface impedance characterization is introduced for the canonical problem of surface fields on a perfect electric conductor (PEC) circular cylinder with a dielectric coating due to a electric current source using the Uniform Theory of Diffraction (UTD) with an Impedance Boundary Condition (IBC). The approach is based on a TE/TM assumption of the surface fields from the original problem. Where this surface impedance fails, an optimization is performed to minimize the error in the SD Green?s function between the original problem and the equivalent one with the IBC. This new approach requires small changes in the available UTD based solution with IBC to include the geodesic ray angle and length dependence in the surface impedance formulas. This asymptotic method, accurate for large separations between source and observer points, in combination with spectral domain (SD) Green?s functions for multidielectric coatings leads to a new hybrid SD-UTD with IBC to calculate mutual coupling among microstrip patches on a multilayer dielectric-coated PEC circular cylinder. Results are compared with the eigenfunction solution in SD, where a very good agreement is met.
Resumo:
A novel formulation for the surface impedance characterization is introduced for the canonical problem of surface fields on a perfect electric conductor (PEC) circular cylinder with a dielectric coating due to a electric current source using the Uniform Theory of Diffraction (UTD) with an Impedance Boundary Condition (IBC). The approach is based on a TE/TM assumption of the surface fields from the original problem. Where this surface impedance fails, an optimization is performed to minimize the error in the SD Green?s function between the original problem and the equivalent one with the IBC. This asymptotic method, accurate for large separations between source and observer points, in combination with spectral domain (SD) Green?s functions for multidielectric coatings leads to a new hybrid SD-UTD with IBC to calculate mutual coupling among microstrip patches on a multilayer dielectric-coated PEC circular cylinder. Results are compared with the eigenfunction solution in SD, where a very good agreement is met.
Resumo:
In this work we present the assessment of the structural and piezoelectric properties of Al(0.5-x)TixN0.5 compounds (titanium content menor que6% atomic), which are expected to possess improved properties than conventional AlN films, such as larger piezoelectric activity, thermal stability of frequency and temperature resistance. Al:Ti:N films were deposited from a twin concentric target of Al and Ti by reactive AC sputtering, which provided films with a radial gradient of the Ti concentration. The properties of the films were investigated as a function of their composition, which was measured by electron dispersive energy dispersive X-ray spectroscopy and Rutherford backscattering spectrometry. The microstructure and morphology of the films were assessed by X-ray diffraction and infrared reflectance. Their electroacoustic properties and dielectric constant were derived from the frequency response of BAW test resonators. Al:Ti:N films properties appear to be strongly dependent on the Ti content, which modifies the AlN wurtzite crystal structure leading to greater dielectric constant, lower sound velocities, lower electromechanical factor and moderately improved temperature coefficient of the resonant frequency.
Resumo:
A design for obtaining memory in optical bistability with liquid crystals is reported. This design uses optical feedback on a twisted nematie liquid crystal ( TNLC ) through an optoelectronic system. A constant input light is the read-out and its value depends on the desired initial working point, usually at the bottom of the T(V) vs. V curve. Light levels depend on the feedback. An input light pulse change the working point to the top of the transmission curve. When this pulse vanishes, the working point remains at the upper part of the curve. Hence a memory function is obtained. Minimum pulse width needed was 1msec. ON-OPF ratio was 100:3.
Resumo:
The influence of the environment on the optical properties of self-assembled In0.5Ga0.5As surface quantum dots is studied as a function of different ambient conditions for sensing applications. Their room temperature photoluminescence (PL) quenches under vacuum and decreases strongly under dry O2 or N2 environments. Nevertheless, they have a strong signal at 1.55 lm in air or in a wet atmosphere. The presence of water molecules in the environment improves the PL intensity likely due to its polar character and therefore its easier adsorption by the surface dangling bonds, leading to a suppression of the non-radiative recombination centers.
Resumo:
Output bits from an optical logic cell present noise due to the type of technique used to obtain the Boolean functions of two input data bits. We have simulated the behavior of an optically programmable logic cell working with Fabry Perot-laser diodes of the same type employed in optical communications (1550nm) but working here as amplifiers. We will report in this paper a study of the bit noise generated from the optical non-linearity process allowing the Boolean function operation of two optical input data signals. Two types of optical logic cells will be analyzed. Firstly, a classical "on-off" behavior, with transmission operation of LD amplifier and, secondly, a more complicated configuration with two LD amplifiers, one working on transmission and the other one in reflection mode. This last configuration has nonlinear behavior emulating SEED-like properties. In both cases, depending on the value of a "1" input data signals to be processed, a different logic function can be obtained. Also a CW signal, known as control signal, may be apply to fix the type of logic function. The signal to noise ratio will be analyzed for different parameters, as wavelength signals and the hysteresis cycles regions associated to the device, in relation with the signals power level applied. With this study we will try to obtain a better understanding of the possible effects present on an optical logic gate with Laser Diodes.
Resumo:
A new proposal to have secure communications in a system is reported. The basis is the use of a synchronized digital chaotic systems, sending the information signal added to an initial chaos. The received signal is analyzed by another chaos generator located at the receiver and, by a logic boolean function of the chaotic and the received signals, the original information is recovered. One of the most important facts of this system is that the bandwidth needed by the system remain the same with and without chaos.
Resumo:
The optical behaviour of cholesteric mixtures of negative dielectric anisotrony under electric fields is reported. A mixture of S 311~ (31.35 %) + N 5 was employed. AC voltages (f = 1000 Hz) betweeen 0 and 150 volts were applied. Cells 23 micron thick, with internal SnO2 electrodes, were used.
Resumo:
he nitrogen content dependence of the electronic properties for copper nitride thin films with an atomic percentage of nitrogen ranging from 26 ± 2 to 33 ± 2 have been studied by means of optical (spectroscopic ellipsometry), thermoelectric (Seebeck), and electrical resistivity measurements. The optical spectra are consistent with direct optical transitions corresponding to the stoichiometric semiconductor Cu3N plus a free-carrier contribution, essentially independent of temperature, which can be tuned in accordance with the N-excess. Deviation of the N content from stoichiometry drives to significant decreases from − 5 to − 50 μV/K in the Seebeck coefficient and to large enhancements, from 10− 3 up to 10 Ω cm, in the electrical resistivity. Band structure and density of states calculations have been carried out on the basis of the density functional theory to account for the experimental results.