881 resultados para Nutrient Cycling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seed rearing is an important part in large scale clam culture industry. Since the nutritional history affects early development in bivalve, the condition of larval nutrition plays a key role in successful seed rearing. So far, the molecular mechanism of nutrient uptake in bivalve larvae is unclear. As one of the important proteolytic enzymes, cathepsin B of several organisms has been reported to be involved in digestion. We intended to analyze whether cathepsin B is involved in larval nutrient metabolism in the economic bivalve, clam Meretrix meretrix. The full length of M. meretrix cathepsin B (MmeCB) cDNA was cloned, which is 1647 bp with an open reading frame of 1014 bp. The deduced amino acid sequence encoded a preproenzyme of 337 residues with Cys-114, His-282 and Asn-302 composing cathepsin B activity center. The temporal and spatial expressions of MmeCB mRNA were examined from trochophore to post larva stages by whole mount in situ hybridization. In trochophore stage, no detectable signal was found. In the later three stages, MmeCB mRNA was detected in the digestive gland, suggesting a possible role of MmeCB in digestion. Moreover, MmeCB mRNA was also observed in the epidermal cells in D-veligers. Cathepsin B specific inhibitor (CA074 methyl ester) was applied to block the activity of cathepsin B in unfed larvae. The average shell lengths of treated larvae were smaller than that in control groups. The results of mRNA epidermal distribution and inhibitor treatment in D-veligers indicated that MmeCB may be also associated with other pathway of nutrient metabolism in larval epidermis. The overall results in this paper revealed that MmeCB might play a role in larval nutrient metabolism. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gracilaria lemaneiformis (Bory) Daws has been extensively cultivated as a source of commercial agar and the ecomaterials in Shenao Bay, Guangdong Province, Jiaozhou Bay, Shandong Province and other waters in China. This paper examines the in situ suspended farming of G. lemaneiformis using raft cultivation under different conditions and its effects on nutrient removal in the laboratory. The results showed that cultivated Gracilaria grew well in both Shenao Bay and Jiaozhou Bay. The biomass of Gracilaria increased from 50 to 775 g m(-1) (fresh weight) during 28 days, with special growth rate (SPG) 13.9% d(-1) under horizontal cultivation in Jiaozhou Bay. Light, temperature, nutrient supply, as well as cultivation treatments such as initial density, and depth of suspension seaweed were important to the growth of Gracilaria. The highest biomass production was observed in the horizontal culture condition (0.0 m) and 0.5-1.5 m deep layer in Jiaozhou Bay. However, the highest growth rate in Shenao Bay appeared under the lowest initial stocking density treatment. In the laboratory, the aquarium experiments (fish and seaweed culture systems) demonstrated that Gracilaria was able to remove inorganic nutrients effectively. The concentration of NH4+-N decreased by 85.53% and 69.45%, and the concentration of PO4-P decreased 65.97% and 26.74% in aquaria with Gracilaria after 23 days and 40 days, respectively. The results indicate that Gracilaria has the potential to remove excess nutrient from coastal areas, and the large-scale cultivation of G. lemaneiformis could be effective to control eutrophication in Chinese coastal waters. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

River discharges are the important freshwater and nutrient sources for Bohai Sea (BS), and have a profound impact on the local marine environment. In this paper, the annual cycles of nutrient and phytoplankton dynamics in 1980s were reproduced using a coupled biogeochemical-physical model. Based on the validated simulations, the nutrient limitation characters were further investigated by running the model with the riverine nutrient altered, first enriching nitrogen and then phosphorus. It was found that although the riverine N:P ratios in Yellow and Haihe Rivers were much higher than the Redfield number, the nitrogen enrichment was still able to enhance the algae bloom in Laizhou and Bohai Bays. On the other hand, the response of algae growth to phosphorus enrichment was not thus obvious, which suggests that the local phytoplankton dynamics was characterized by the nitrogen limitation. Simulations also show that the nitrogen enrichment is generally accompanied by the phosphorus consumption, so a shift from nitrogen limitation to phosphorus limitation may occur if such a trend continues. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From November 2002 to 2006, five cruises were undertaken in the Yangtze River Estuary and the adjacent East China Sea to compare the nutrient concentrations, ratios and potential nutrient limitation of phytoplankton growth before and after impoundment (June 2003) of the Three Gorges Dam (TGD). Concentrations of dissolved inorganic nitrogen (DIN), soluble reactive phosphorus (SRP) and total nitrogen (TN) exhibited an increasing trend from 2002 to 2006. In contrast, total phosphorus (TP) concentration exhibited a decreasing trend. The mean concentrations of DIN, SRP, and TN in the total study area increased from 21.4 mu M, 0.9 mu M, and 41.8 mu M in 2002 to 37.5 mu M, 1.3 mu M. and 82.2 mu M in 2006, respectively. while TP decreased from 2.1 mu M to 1.7 mu M. The concentration of dissolved reactive silica (DRSi) had no major fluctuations and the differences were not significant. The mean concentration of DRSi in the total study area ranged from 52.5 to 92.3 mu M. The Si:N ratio decreased significantly from 2.7 in 2002 to 1.3 in 2006, while TN: TP ratio increased from 22.1 to 80.3. The area of potential P limitation of phytoplankton growth expanded after 2003 and potential Si limitation appeared in 2005 and 2006. Potential P limitation mainly occurred in an area of salinity less than 30 after 2003, while potential Si limitation occurred where the salinity was greater than 30. By comparison with historical data, the concentrations of nitrate and SRP in this upper estuary during November 1980-2006 increased obviously after impoundment of TGD but DRSi decreased. Meanwhile, the ratios of N:P, Si:N and Si:P decreased obviously. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the effects of enhanced nutrient loading in estuarine waters on phytoplankton growth and microzooplankton grazing, we conducted monthly dilution experiments at 2 stations in Hong Kong coastal waters with contrasting trophic conditions. The western estuarine station (WE) near the Pearl River estuary is strongly influenced by freshwater discharge, while the eastern oceanic station (EO) is mostly affected by the South China Sea. Growth rates of phytoplankton were often limited by nutrients at EO, while nutrient limitation of phytoplankton growth seldom Occurred at WE due to the high level of nutrients delivered by the Pearl River, especially in the summer rainy season. Higher chlorophyll a, microzooplankton biomass, phytoplankton growth and microzooplankton grazing rates were found at WE than at EO. However, the increase in chlorophyll greatly exceeded the increase in phytoplankton growth rate, reflecting different response relationships to nutrient availability. Strong seasonality was observed at both stations, with temperature being an important factor affecting both phytoplankton growth and microzooplankton grazing rates. Picophytoplankton, especially Synechococcus, also exhibited great seasonality at EO, with summer abundances being 2 or 3 orders of magnitude higher than those during winter, Our results confirm that in eutrophic coastal environments, microzooplankton grazing is a dominant loss pathway for phytoplankton, accounting for the utilization of >50%, of primary production on average.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrient dynamics and its influence on the distribution of chlorophyll-a in the upwelling area of the Changjiang (Yangtze) River estuary were investigated in the spring (May) and summer (August) of 2004. In the spring, upwelling was apparent in the region of 122 degrees 20'-123 degrees 00' E, 31 degrees 00'-32 degrees 00' N and was associated with low temperature (16-21 degrees C), high salinity (24-33 practical salinity units [psu]), and low dissolved oxygen (2.5-6.0 mg L-1) in the upper 10 m of the water column. The spring upwelling increased the mixed-layer phosphate, nitrate, and silicate concentrations to roughly 1, 15, and 15 mu mol L-1, respectively, and improved the light transparency in the euphotic zone. This improvement in phytoplankton growing conditions was followed by an increase in chlorophyll-a concentrations. The summer upwelling was weaker and occurred over a smaller geographical area (122 degrees 20'-123 degrees 00' E, 31 degrees 15'-31 degrees 50' N). Strongly influenced by turbid Changjiang diluted water (CDW), it had little impact on the upper 10 m of the water column but instead increased nutrient concentrations at greater depths. The high concentration of particulates in the CDW reduced light transmission in the upper 10 m and, hence, limited phytoplankton growth throughout the water column. Chlorophyll-a concentrations in the summer upwelling area were roughly an order of magnitude lower than in the spring. Water clarity, as influenced by the CDW, appears to be the principal factor limiting the impact of upwelling on phytoplankton biomass in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variations of cellular total lipid, total carbohydrate and total protein content of two dominant bloom-forming species (Skeletonema costatum and Prorocentrum donghaiense) isolated from the Yangtze River Estuary were examined under six different nutrient conditions in batch cultures. Daily samples were collected to estimate the cell growth, nutrient concentration and three biochemical compositions content during 7 days for S. costatum and the same sampling procedure was done every other day during 10 days for P. donghaiense. Results showed that for S. costatum, cellular total lipid content increased under phosphorus (P) limitation, but not for nitrogen (N) limitation; cellular carbohydrate were accumulated under both N and P limitation: cellular total protein content of low nutrient concentration treatments were significantly lower than that of high nutrient concentration treatments. For P. donghaiense, both cellular total lipid content and total carbohydrate content were greatly elevated as a result of N and P exhaustion, but cellular total protein content had no significant changes under nutrient limitation. In addition, the capability of accumulation of three biochemical constituents of P. donghaiense was much stronger than that of S. costatum. Pearson correlation showed that for both species, the biochemical composition of three constituents (lipid, carbohydrate and protein) had no significant relationship with extracellular N concentration, but had positive correlation with extracellular and intracellular P concentration. The capability of two species to accumulate cellular total lipid and carbohydrate under nutrient limitation may help them accommodate the fluctuating nutrient condition of the Yangtze River Estuary. The different responses of two species of cellular biochemical compositions content under different nutrient conditions may provide some evidence to explain the temporal characteristic of blooms Caused by two species in the Yangtze River Estuary. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concentrations and ratios of nutrients in Jiaozhou Bay, China, have changed much in the past decades, with trends indicating an increase in nitrogen and a decrease in silicate. Statistical analysis has shown that the long-term variations of nutrients are associated with agricultural activities, precipitation, and anthropogenic factors. Stoichiometric calculations indicate that the nutrient structure has become more and more unbalanced. There has been almost no possibility for nitrogen limitation since the 1980s, the probability of P limitation has increased, and the probability of Si limitation has also increased markedly from the 1980s to the 1990s. As a consequence of changes in nutrient structure, a decrease in the abundance of net phytoplankton was evident, whereas total chlorophyll a levels have remained roughly unchanged at around 3.55 mu g/L. Thus, it is likely that smaller species have taken the niche vacated by the larger species. Changes in phytoplankton size and species composition may ultimately lead to various functional and structural changes at the system level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inventories of nutrients in the surface water and large phytoplankton( > 69 pm) were analyzed from the data set of JERS ecological database about a typical coastal waters, the Jiaozhou Bay, China, from 1960s for N, P and from 1980s; for Si. By examining long-term changes of nutrient concentration, calculating stoichiometric balance, and comparing diatom composition, Si limitation of diatom production was found to be more possible. The possibility of Si limitation was from 37% in 1980s to 50% in 1990s. Jiaozhou Bay ecosystem is becoming serious eutrophication, with notable increase of NO2-N, NO3-N and NH4-N from 0.1417 mumol/L, 0.5414 mumol/L, 1.7222 mumol/L in 1960s to 0.9551 mumol/L, 3.001 mumol/L, 8.0359 mumol/L in late 1990s respectively and prominent decrease of Si from 4.2614 mumol/L in 1980s to 1.5861 mumol/L in late 1990s; the nutrient structure is controlled by nitrogen; the main limiting nutrient is probably silicon; because of the Si limitation the phytoplankton community structure has changed drastically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the influence of human activities, nutrient concentrations, nutrient ratios and phytoplankton composition have notably changed in Jiaozhou Bay, China since the 1960s. From the 1960s to the 1990s, nutrient concentrations have increased 1.4 times for PO4-P, 4.3 times for NO3-N, 4.1 times for NH4-N and 3.9 times for DIN. The atomic ratio of DIN:PO4-P increased very rapidly from 15.9 +/- 6.3 for the 1960s, to 37.8 +/- 22.9 for the 1990s. SiO3-Si concentration has remained at a very low level from the 1980s to the 1990s. The high ratio of DIN: PO4-P and low ratios of SiO3-Si:PO4-P (7.6 +/- 8.9) and SiO3-Si:DIN (0.19 +/- 0.15) showed the nutrient structure of Jiaozhou Bay has changed from more balanced to unbalanced during the last 40 years. The possibility that DIN and/or PO4-P as limiting factors of Jiaozhou Bay phytoplankton has been lessened or eliminated and that of SiO3-Si limiting has been increased. The changes in nutrient structure may have led to the decrease of large diatoms and a shift of phytoplankton species composition. It is likely that there is a trend from large diatoms to smaller cells in Jiaozhou Bay. (C) 2001 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon, nitrogen, phosphorus, silicon composition of cultured two different sized phytoplankton common species of Thalassiosira rotula and Skeletonema costatum from the Jiaozhou Bay were measured. Carbon, nitrogen, phosphorus, silicon contents in cell were. obvious higher in T. rotula than in S. costatum, but the percents of nitrogen, phosphorus, silicon contents in cell dry mass in T. rotula were lower than those in S. costatum. The dry mass concentrations of nitrogen,phosphorus,silicon in S. costatum were much higher than those in T. rotula, particularly silicon, the former was 6.4 times of the latter, showing that S. costatum could more assimilate these elements. Especially, S. costatum had competitive dominance for assimilating silicon, which is beneficial to its becoming a major dominant species in relative short silicon of the Jiaozhou Bay. There were some differences in numerical value of nutrient ratios both laboratory-cultured phytoplankton and different sized suspended particulates (mainly phytoplankton) in the Jiaozhou Bay, which was caused by the changes of environment. High contents of carbon, nitrogon and relative low phosporus,silicon, high molar ratio of nitrogen to phosphorus (far higher than Redfield value) and low ratio of silicon to phosphorus and silicon to nitrogen (far lower than Redfield values) in the two diatoms and different sized suspended particulates were consistent with those in the seawater. Relative short silicon in the seawater and phytoplankton showed that silicon was possibly affectting phytoplankton growth in the Jiaozhou Bay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The source and significance. of two mitrients, nitrogen. and phosphorous, were investigated by a modified dilution method performed on seawater samples from the Jiaozhou Bay in autumn 2004. This modified dilution method accounted for the phytoplankton growth rate, microzooplankton grazing mortality rate, the external nutrient pools, as well as nutrient supplied through remineralization by microzooplankton. The results indicated that the phytoplankton net growth rate increased in turn from inside the bay, to outside the bay, to in the Xiaogang Harbor. The phytoplankton, maximum growth rates and microzooplankton grazing mortality rates were 1.14 and 0.92 d(-1) outside the bay, 0.42 and 0.32 d(-1) inside the bay and 0.98 and 0.62 d(-1) in the harbor respectively. Outside the bay, the remineralized nitrogen (K-r = 24.49) had heavy influence on the growth of the phytoplankton. Inside the bay, the remineralized phosphorus(K-r = 3.49) strongly affected the phytoplankton growth. In the harbor, the remineralized phosphorus (K-r = 3.73) was in larger demand by phytoplankton growth. The results demonstrated that the different nutrients pools supplied for phytoplankton growth were greatly in accordance with the phytoplankton community structure, microzooplankton grazing mortality rates and environmental conditions. It is revealed that, nutrient remineralization is much more important for the phytoplankton growth in the Jiaozhou Bay than previously believed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red tides (high biomass phytoplankton blooms) have frequently occurred in Hong Kong waters, but most red tides occurred in waters which are not very eutrophic. For example, Port Shelter, a semi-enclosed bay in the northeast of Hong Kong, is one of hot spots for red tides. Concentrations of ambient inorganic nutrients (e.g. N, P), are not high enough to form the high biomass of chlorophyll a (chl a) in a red tide when chl a is converted to its particulate organic nutrient (N) (which should equal the inorganic nutrient, N). When a red tide of the dinoflagellate Scrippsiella trochoidea occurred in the bay, we found that the red tide patch along the shore had a high cell density of 15,000 cells ml(-1), and high chl a (56 mu g l(-1)), and pH reached 8.6 at the surface (8.2 at the bottom), indicating active photosynthesis in situ. Ambient inorganic nutrients (NO3, PO4, SiO4, and NH4) were all low in the waters and deep waters surrounding the red tide patch, suggesting that the nutrients were not high enough to support the high chl a >50 mu g l(-1) in the red tide. Nutrient addition experiments showed that the addition of all of the inorganic nutrients to a non-red-tide water sample containing low concentrations of Scrippsiella trochoidea did not produce cell density of Scrippsiella trochoidea as high as in the red tide patch, suggesting that nutrients were not an initializing factor for this red tide. During the incubation of the red tide water sample without any nutrient addition, the phytoplankton biomass decreased gradually over 9 days. However, with a N addition, the phytoplankton biomass increased steadily until day 7, which suggested that nitrogen addition was able to sustain the high biomass of the red tide for a week with and without nutrients. In contrast, the red tide in the bay disappeared on the sampling day when the wind direction changed. These results indicated that initiation, maintenance and disappearance of the dinoflagellate Scrippsiella trochoidea red tide in the bay were not directly driven by changes in nutrients. Therefore, how nutrients are linked to the formation of red tides in coastal waters need to be further examined, particularly in relation to dissolved organic nutrients. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrient input from the Changjiang River (Yangtze River) has been increasing dramatically since the 1960s. At the mouth of the Changjiang River, the nitrate concentration has increased about three-fold in 40 years, from 20.5 mu mol/L in the 1960s to 59.1 mu mol/L in the 1980s and to 80.6 mu mol/L in 1990-2004. Phosphate concentration increased by a factor of 30%, from 0.59 mu mol/L in the 1980s to 0.77 mu mol/L in 1990-2004. The increasing nitrate input has arisen mostly from the mid and lower reaches of the Changjiang River, where the river meets one of the most strongly developed agriculture areas in China. Responses of the coastal phytoplankton community to the increasing nutrient inputs are also seen in the available monitoring data. First, a trend of increasing phytoplankton standing stock from 1984 to 2002 appeared in the Changjiang River estuary and adjacent coastal waters, especially in late spring. Secondly, the proportion of diatoms in the whole phytoplankton community showed a decreasing trend from about 85% in 1984 to about 60% in 2000. Finally, red tides/harmful algal blooms increased dramatically in this area in terms of both number and scale. About 30-80 red tide events were recorded each year from 2000 to 2005 in the East China Sea. The scale of some blooms has been in excess of 10,000 km(2). (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both nitrate (NO (3) (-) ) and soluble reactive phosphate (PO (4) (3-) ) concentration in the freshwater end-member at the mouth of the Changjiang River have increased dramatically since the 1960s. Within the same period in the sea area, with surface salinity > 30, NO (3) (-) concentration has shown an obvious increase, PO (4) (3-) has not changed greatly and dissolved reactive silica (SiO (3) (2-) ) has deceased dramatically. An examination of the elemental ratio of NO (3) (-) to PO (4) (3-) at the mouth of the Changjiang River did not show a systematic trend from the 1960s to 2000s largely because both nutrients increased simultaneously. In comparison, the elemental ratio of dissolved inorganic nitrogen (DIN) to PO (4) (3-) in surface seawater, with salinity > 22, has shown a clearly increasing trend. Furthermore, an overall historical change of the SiO (3) (2-) :PO (4) (3-) ratio has undergone a reverse trend in this area. Based on the changes of SiO (3) (2-) :PO (4) (3-) and DIN:PO (4) (3-) ratios, we can conclude that an overall historical change of SiO (3) (2-) :DIN ratio has decreased in this area from the 1950-1960s to 2000s. The argument that phytoplankton productivity in the Changjiang estuary has been enhanced by increasing nutrient input from the riverine transport was supported by these results. A comparative study analyzing the shift of phytoplankton composition from the mid-1980s to 2000s was also made. The results indicated that the average yearly percentage of diatom species in the Changjiang estuary has decreased from 84.6% during 1985-1986 to 69.8% during 2004-2005. Furthermore, the average yearly percentage of diatom abundance in the Changjiang estuary decreased from 99.5% during to 75.5% over the same time period, while the abundance of dinoflagellates has increased dramatically, from 0.7% to 25.4%.