957 resultados para NreABC, nitrate regulation, reporter gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhancers are defined by their ability to stimulate gene activity from remote sites and their requirement for promoter-proximal upstream activators to activate transcription. Here we demonstrate that recruitment of the p300/CBP-associated factor PCAF to a reporter gene is sufficient to stimulate promoter activity. The PCAF-mediated stimulation of transcription from either a distant or promoter-proximal position depends on the presence of an upstream activator (Sp1). These data suggest that acetyltransferase activity may be a primary component of enhancer function, and that recruitment of polymerase and enhancement of transcription are separable. Transcriptional activation by PCAF requires both its acetyltransferase activity and an additional activity within its N terminus. We also show that the simian virus 40 enhancer and PCAF itself are sufficient to counteract Mad-mediated repression. These results are compatible with recent models in which gene activity is regulated by the competition between deacetylase-mediated repression and enhancer-mediated recruitment of acetyltransferases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Threshold mechanisms of transcriptional activation are thought to be critical for translating continuous gradients of extracellular signals into discrete all-or-none cellular responses, such as mitogenesis and differentiation. Indeed, unequivocal evidence for a graded transcriptional response in which the concentration of inducer directly correlates with the level of gene expression in individual eukaryotic cells is lacking. By using a novel binary tetracycline regulatable retroviral vector system, we observed a graded rather than a threshold mechanism of transcriptional activation in two different model systems. When polyclonal populations of cells were analyzed at the single cell level, a dose-dependent, stepwise increase in expression of the reporter gene, green fluorescent protein (GFP), was observed by fluorescence-activated cell sorting. These data provide evidence that, in addition to the generally observed all-or-none switch, the basal transcription machinery also can respond proportionally to changes in concentration of extracellular inducers and trancriptional activators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two highly conserved RAS genes of the budding yeast Saccharomyces cerevisiae are redundant for viability. Here we show that haploid invasive growth development depends on RAS2 but not RAS1. Ras1p is not sufficiently expressed to induce invasive growth. Ras2p activates invasive growth using either of two downstream signaling pathways, the filamentation MAPK (Cdc42p/Ste20p/MAPK) cascade or the cAMP-dependent protein kinase (Cyr1p/cAMP/PKA) pathway. This signal branch point can be uncoupled in cells expressing Ras2p mutant proteins that carry amino acid substitutions in the adenylyl cyclase interaction domain and therefore activate invasive growth solely dependent on the MAPK cascade. Both Ras2p-controlled signaling pathways stimulate expression of the filamentation response element-driven reporter gene depending on the transcription factors Ste12p and Tec1p, indicating a crosstalk between the MAPK and the cAMP signaling pathways in haploid cells during invasive growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisense oligonucleotides are powerful tools for the in vivo regulation of gene expression. We have characterized the intracellular distribution of fluorescently tagged phosphorothioate oligodeoxynucleotides (PS-ONs) at high resolution under conditions in which PS-ONs have the potential to display antisense activity. Under these conditions PS-ONs predominantly localized to the cell nucleus where they accumulated in 20–30 bright spherical foci designated phosphorothioate bodies (PS bodies), which were set against a diffuse nucleoplasmic population excluding nucleoli. PS bodies are nuclear structures that formed in cells after PS-ON delivery by transfection agents or microinjection but were observed irrespectively of antisense activity or sequence. Ultrastructurally, PS bodies corresponded to electron-dense structures of 150–300 nm diameter and resembled nuclear bodies that were found with lower frequency in cells lacking PS-ONs. The environment of a living cell was required for the de novo formation of PS bodies, which occurred within minutes after the introduction of PS-ONs. PS bodies were stable entities that underwent noticeable reorganization only during mitosis. Upon exit from mitosis, PS bodies were assembled de novo from diffuse PS-ON pools in the daughter nuclei. In situ fractionation demonstrated an association of PS-ONs with the nuclear matrix. Taken together, our data provide evidence for the formation of a nuclear body in cells after introduction of phosphorothioate oligodeoxynucleotides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insufficient efficacy and/or specificity of antisense oligonucleotides limit their in vivo usefulness. We demonstrate here that a high-affinity DNA analog, locked nucleic acid (LNA), confers several desired properties to antisense agents. Unlike DNA, LNA/DNA copolymers were not degraded readily in blood serum and cell extracts. However, like DNA, the LNA/DNA copolymers were capable of activating RNase H, an important antisense mechanism of action. In contrast to phosphorothioate-containing oligonucleotides, isosequential LNA analogs did not cause detectable toxic reactions in rat brain. LNA/DNA copolymers exhibited potent antisense activity on assay systems as disparate as a G-protein-coupled receptor in living rat brain and an Escherichia coli reporter gene. LNA-containing oligonucleotides will likely be useful for many antisense applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous proteins bend DNA upon binding, a phenomenon of potential significance for regulation of gene expression and chromatin. DNA bending is commonly predicted from the presence of electrophoretic mobility anomalies in protein–DNA complexes. However, as compared with electrophoretic methods, several DNA binding oncoprotein families do not display comparable evidence of DNA bends in x-ray structural studies. Herein, circularization kinetics and affinity measurements with prebent DNA templates were employed to assess bending and DNA structural preferences for Max and other basic helix–loop–helix/leucine zipper proteins. In this way, proteins in the Myc/Max basic helix–loop–helix/leucine zipper family were found not to bend DNA in solution but to actually stabilize DNA in an unbent configuration that resists circularization. The mobility anomaly was found to be induced by the leucine zipper protein motif, rather than structural distortions of DNA. Thus rigid protein domain structures may induce anomalous electrophoretic mobility. Moreover, the energetic preference of non-DNA bending proteins for unbent templates suggests mechanisms whereby chromatin structure may regulate transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells in the brains of adult mammals continue to proliferate in the subventricular zone (SVZ) throughout the lateral wall of the lateral ventricle. Here we show, using whole mount dissections of this wall from adult mice, that the SVZ is organized as an extensive network of chains of neuronal precursors. These chains are immunopositive to the polysialylated form of NCAM, a molecule present at sites of plasticity, and TuJ1, an early neuronal marker. The majority of the chains are oriented along the rostrocaudal axis and many join the rostral migratory stream that terminates in the olfactory bulb. Using focal microinjections of DiI and transplantation of SVZ cells carrying a neuron-specific reporter gene, we demonstrate that cells originating at different rostrocaudal levels of the SVZ migrate rostrally and reach the olfactory bulb where they differentiate into neurons. Our results reveal an extensive network of pathways for the tangential chain migration of neuronal precursors throughout the lateral wall of the lateral ventricle in the adult mammalian brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the nuclear genome of Saccharomyces cerevisiae, simple, repetitive DNA sequences (microsatellites) mutate at rates much higher than nonrepetitive sequences. Most of these mutations are deletions or additions of repeat units. The yeast mitochondrial genome also contains many microsatellites. To examine the stability of these sequences, we constructed a reporter gene (arg8m) containing out-of-frame insertions of either poly(AT) or poly(GT) tracts within the coding sequence. Yeast strains with this reporter gene inserted within the mitochondrial genome were constructed. Using these strains, we showed that poly(GT) tracts were considerably less stable than poly(AT) tracts and that alterations usually involved deletions rather than additions of repeat units. In contrast, in the nuclear genome, poly(GT) and poly(AT) tracts had similar stabilities, and alterations usually involved additions rather than deletions. Poly(GT) tracts were more stable in the mitochondria of diploid cells than in haploids. In addition, an msh1 mutation destabilized poly(GT) tracts in the mitochondrial genome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Targeted expression of foreign genes to the peripheral nervous system is interesting for many applications, including gene therapy of neuromuscular diseases, neuroanatomical studies, and elucidation of mechanisms of axonal flow. Here we describe a microneurosurgical technique for injection of replication-defective viral vectors into dorsal root ganglia (DRG). Adenovirus- and adeno-associated virus-based vectors with transcriptional competence for DRG neurons led to expression of the gene of interest throughout the first neuron of the sensory system, from the distal portions of the respective sensory nerve to the ipsilateral nucleus gracilis and cuneatus, which contains the synapses to the spinothalamic tracts. Use of Rag-1 ablated mice, which lack all B and T lymphocytes, allowed for sustained expression for periods exceeding 100 days. In immunocompetent mice, long-term (52 days) expression was achieved with similar efficiency by using adeno-associated viral vectors. DRG injection was vastly superior to intraneural injection into the sciatic nerve, which mainly transduced Schwann cells in the vicinity of the site of inoculation site but only inefficiently transduced nerve fibers, whereas i.m. injection did not lead to any significant expression of the reporter gene in nerve fibers. The versatile and efficient transduction of genes of interest should enable a wide variety of functional studies of peripheral nervous system pathophysiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Somatic mutation accumulation has been implicated as a major cause of cancer and aging. By using a transgenic mouse model with a chromosomally integrated lacZ reporter gene, mutational spectra were characterized at young and old age in two organs greatly differing in proliferative activity, i.e., the heart and small intestine. At young age the spectra were nearly identical, mainly consisting of G·C to A·T transitions and 1-bp deletions. At old age, however, distinct patterns of mutations had developed. In small intestine, only point mutations were found to accumulate, including G·C to T·A, G·C to C·G, and A·T to C·G transversions and G·C to A·T transitions. In contrast, in heart about half of the accumulated mutations appeared to be large genome rearrangements, involving up to 34 centimorgans of chromosomal DNA. Virtually all other mutations accumulating in the heart appeared to be G·C to A·T transitions at CpG sites. These results suggest that distinct mechanisms lead to organ-specific genome deterioration and dysfunction at old age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ORF slr0798, now designated ziaA, from Synechocystis PCC 6803 encodes a polypeptide with sequence features of heavy metal transporting P-type ATPases. Increased Zn2+ tolerance and reduced 65Zn accumulation was observed in Synechococcus PCC 7942, strain R2-PIM8(smt), containing ziaA and upstream regulatory sequences, compared with control cells. Conversely, reduced Zn2+ tolerance was observed following disruption of ziaA in Synechocystis PCC 6803, and ziaA-mediated restoration of Zn2+ tolerance has subsequently been used as a selectable marker for transformation. Nucleotide sequences upstream of ziaA, fused to a promoterless lacZ gene, conferred Zn2+-dependent β-galactosidase activity when introduced into R2-PIM8(smt). The product of ORF sll0792, designated ZiaR, is a Zn2+-responsive repressor of ziaA transcription. Reporter gene constructs lacking ziaR conferred elevated Zn2+-independent expression from the ziaA operator–promoter in R2-PIM8(smt). Gel retardation assays detected ZiaR-dependent complexes forming with the zia operator–promoter and ZiaR–DNA binding was enhanced by treatment with a metal-chelator in vitro. Two mutants of ZiaR (C71S/C73S and H116R) bound to, and repressed expression from, the ziaA operator–promoter but were unable to sense Zn2+. Metal coordination to His-imidazole and Cys-thiolate ligands at these residues of ZiaR is thus implicated in Zn2+-perception by Synechocystis PCC 6803.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of novel fluorogenic retro-aldol substrates for aldolase antibody 38C2 is described. These substrates are efficiently and specifically processed by antibody aldolases but not by natural cellular enzymes. Together, the fluorogenic substrates and antibody aldolases provide reporter gene systems that are compatible with living cells. The broad scope of the antibody aldolase allows for the processing of a range of substrates that can be designed to allow fluorescence monitoring at a variety of wavelengths. We also have developed the following concept in fluorescent protein tags. β-Diketones bearing a fluorescent tag are bound covalently by the aldolase antibody and not other proteins. We anticipate that proteins fused with the antibody can be tagged specifically and covalently within living cells with fluorophores of virtually any color, thereby providing an alternative to green fluorescent protein fusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucocorticoids exert multiple anti-inflammatory activities, one of which is the inhibition of transcription dependent on the nuclear factor (NF)-κB. It has been suggested that the effect of dexamethasone (DEX), a glucocorticoid analog, is attributed to an increased production of the inhibitory IκB molecule, which in turn would bind and remove activated, DNA-bound NF-κB complexes in the cell nucleus. Upon investigating DEX-mediated repression of interleukin-6 expression induced by tumor necrosis factor, DEX treatment was found to act directly on NF-κB-dependent transcription, without changing the expression level of IκB. Neither the mRNA of IκB nor the protein was significantly elevated by a combined treatment with tumor necrosis factor and DEX of murine endothelial or fibroblast cells. The DNA-binding activity of induced NF-κB also remained unchanged after stimulation of cells with DEX. Evidence for a direct nuclear mechanism of action was obtained by analysis of cell lines stably expressing a fusion protein between the DNA-binding domain of the yeast Gal4 protein and the transactivating p65 subunit of NF-κB. Expression of a Gal4-dependent luciferase reporter gene activated by this nuclear fusion protein was also strongly repressed after addition of DEX. Because the DNA-binding activity of the Gal4 fusion protein was not affected by DEX, it can be concluded that the reduction of gene activation was caused by interference of the activated glucocorticoid receptor with the transactivation potential of the NF-κB p65 subunit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phytochemical resveratrol, which is found in grapes and wine, has been reported to have a variety of anti-inflammatory, anti-platelet, and anti-carcinogenic effects. Based on its structural similarity to diethylstilbestrol, a synthetic estrogen, we examined whether resveratrol might be a phytoestrogen. At concentrations (≈3–10 μM) comparable to those required for its other biological effects, resveratrol inhibited the binding of labeled estradiol to the estrogen receptor and it activated transcription of estrogen-responsive reporter genes transfected into human breast cancer cells. This transcriptional activation was estrogen receptor-dependent, required an estrogen response element in the reporter gene, and was inhibited by specific estrogen antagonists. In some cell types (e.g., MCF-7 cells), resveratrol functioned as a superagonist (i.e., produced a greater maximal transcriptional response than estradiol) whereas in others it produced activation equal to or less than that of estradiol. Resveratrol also increased the expression of native estrogen-regulated genes, and it stimulated the proliferation of estrogen-dependent T47D breast cancer cells. We conclude that resveratrol is a phytoestrogen and that it exhibits variable degrees of estrogen receptor agonism in different test systems. The estrogenic actions of resveratrol broaden the spectrum of its biological actions and may be relevant to the reported cardiovascular benefits of drinking wine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a fluorescence-based directed termination PCR (fluorescent DT–PCR) that allows accurate determination of actual sequence changes without dideoxy DNA sequencing. This is achieved using near infrared dye-labeled primers and performing two PCR reactions under low and unbalanced dNTP concentrations. Visualization of resulting termination fragments is accomplished with a dual dye Li-cor DNA sequencer. As each DT–PCR reaction generates two sets of terminating fragments, a pair of complementary reactions with limiting dATP and dCTP collectively provide information on the entire sequence of a target DNA, allowing an accurate determination of any base change. Blind analysis of 78 mutants of the supF reporter gene using fluorescent DT–PCR not only correctly determined the nature and position of all types of substitution mutations in the supF gene, but also allowed rapid scanning of the signature sequences among identical mutations. The method provides simplicity in the generation of terminating fragments and 100% accuracy in mutation characterization. Fluorescent DT–PCR was successfully used to generate a UV-induced spectrum of mutations in the supF gene following replication on a single plate of human DNA repair-deficient cells. We anticipate that the automated DT–PCR method will serve as a cost-effective alternative to dideoxy sequencing in studies involving large-scale analysis for nucleotide sequence changes.