954 resultados para Nonlinear time series analysis
Resumo:
Phytoplankton taxonomic pigments and primary production were measured at the JGOFS-France time-series station DYFAMED in the northwestern Mediterranean Sea during May 1995 to investigate changes in phytoplankton composition and the biogeochemical implications (DYNAPROC experiment). The study period covered the transitional situation from late spring bloom to pre-oligotrophic. The late spring bloom situation, occurring at the beginning of the study, revealed high chlorophyll a concentrations (maximum 3 mg/m**3 at 30 m) and high primary production (maximum 497 mg C/m**2/ 14 h). At the end of the experiment, the trophic regime shifted towards pre-oligotrophic and was characterized by lower chlorophyll a concentrations (<1 mg/m**3), although primary production still remained high (659 mg C/m**2/ 14 h). At termination of the spring bloom, the phytoplankton community was composed of chromophyte nanoflagellates (38±4%), diatoms (29±2%), cryptophytes (12±1%) and cyanobacteria (8±1%). During the transition to the pre-oligotrophic period, the contribution of small cells increased (e.g. cyanobacteria 18±2%, green flagellates 5±1%). Vertical profiles of pigments revealed a partition of the phytoplankton groups: cyanobacteria were most abundant in the surface layer, nanoflagellates containing 19'-HF+19'BF at the depth of chlorophyll maximum, whereas diatoms were located below the chlorophyll maximum. At termination of the spring bloom, a wind event induced vertical transport of nutrients into the euphotic layer. Phytoplankton groups responded differently to the event: initially, diatom concentrations increased (for 24 h) then rapidly decreased. In contrast, all others groups decreased just after the event. The long-term effect was a decrease of biomass of dominant groups (diatoms and chromophyte nanoflagellates), which accelerated the community succession and hence contributed to the oligotrophic transition.
Resumo:
Particulate samples from the water column were collected monthly from depths of 5-150 m, between May 1996 and March 1997, in the northwestern Mediterranean Sea (Ligurian Sea) as part of the DYFAMED project within the French JGOFS program. These samples were analyzed by gas chromatography-electron impact mass spectrometry for their phytol and 3-methylidene-3,7,11-trimethylhexadecan-1,2-diol (phytyldiol) content. The corresponding Chlorophyll Phytyl side chain Photodegradation Index, molar ratio of phytyldiol to phytol, was calculated and the mean amount of chlorophyll photodegraded within the euphotic zone estimated. Seasonal differences in the chlorophyll photodegradation process appear in the one-year study. The chlorophyll appeared more photodegraded in the surface water (generally more than 40% photodegraded at 5-10 m) than at the deep chlorophyll maximum (DCM) (40-50 m) observed in the summer stratified waters (about 20% photodegraded). This difference was attributed to the healthy state of the phytoplankton community (coincidence with the highest primary production levels) and to the lower intensity of irradiance at the DCM level. On the other hand, the bulk of the detrital chlorophyll (chlorophyll associated with phytodetritus, phaeopigments) undergoes photodegradation before it sinks out of the photic zone. However, in January (winter mixed water) the pigments exported towards the sea floor were less photodegraded. This is thought to result from a shorter period of residence of the pigments in the photic zone due to vertical convection and grazing activity of macrozooplankton (salps), which are producers of rapid sinking fecal pellets.
Bacterial production and respiration measured on water bottle samples at time series station DYFAMED
Resumo:
This data set contains a time series of plant height measurements (vegetative and reproductive) from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In addition, data on species specific plant heights for the main experiment are available from 2002. In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Plant height was recorded, generally, twice a year just before biomass harvest (during peak standing biomass in late May and in late August). Methodologies of measuring height have varied somewhat over the years. In earlier year the streched plant height was measured, while in later years the standing height without streching the plant was measured. Vegetative height was measured either as the height of the highest leaf or as the length of the main axis of non-flowering plants. Regenerating height was measured either as the height of the highest flower on a plant or as the height of the main axis of flowering. Sampled plants were either randomly selected in the core area of plots or along transects in defined distances. For details refer to the description of individual years. Starting in 2006, also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details in the general description of the Jena Experiment) were sampled. 2. Species specific plant height was recorded two times in 2002: in late July (vegetative height) and just before biomass harvest during peak standing biomass in late August (vegetative and regenerative height). For each plot and each sown species in the species pool, 3 plant individuals (if present) from the central area of the plots were randomly selected and used to measure vegetative height (non-flowering indviduals) and regenerative height (flowering individuals) as stretched height. Provided are the means over the three measuremnts per plant species per plot.