793 resultados para Non-parametric


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fractal and multifractal are concepts that have grown increasingly popular in recent years in the soil analysis, along with the development of fractal models. One of the common steps is to calculate the slope of a linear fit commonly using least squares method. This shouldn?t be a special problem, however, in many situations using experimental data the researcher has to select the range of scales at which is going to work neglecting the rest of points to achieve the best linearity that in this type of analysis is necessary. Robust regression is a form of regression analysis designed to circumvent some limitations of traditional parametric and non-parametric methods. In this method we don?t have to assume that the outlier point is simply an extreme observation drawn from the tail of a normal distribution not compromising the validity of the regression results. In this work we have evaluated the capacity of robust regression to select the points in the experimental data used trying to avoid subjective choices. Based on this analysis we have developed a new work methodology that implies two basic steps: ? Evaluation of the improvement of linear fitting when consecutive points are eliminated based on R pvalue. In this way we consider the implications of reducing the number of points. ? Evaluation of the significance of slope difference between fitting with the two extremes points and fitted with the available points. We compare the results applying this methodology and the common used least squares one. The data selected for these comparisons are coming from experimental soil roughness transect and simulated based on middle point displacement method adding tendencies and noise. The results are discussed indicating the advantages and disadvantages of each methodology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper introduces a semantic language developed with the objective to be used in a semantic analyzer based on linguistic and world knowledge. Linguistic knowledge is provided by a Combinatorial Dictionary and several sets of rules. Extra-linguistic information is stored in an Ontology. The meaning of the text is represented by means of a series of RDF-type triples of the form predicate (subject, object). Semantic analyzer is one of the options of the multifunctional ETAP-3 linguistic processor. The analyzer can be used for Information Extraction and Question Answering. We describe semantic representation of expressions that provide an assessment of the number of objects involved and/or give a quantitative evaluation of different types of attributes. We focus on the following aspects: 1) parametric and non-parametric attributes; 2) gradable and non-gradable attributes; 3) ontological representation of different classes of attributes; 4) absolute and relative quantitative assessment; 5) punctual and interval quantitative assessment; 6) intervals with precise and fuzzy boundaries

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neuronal morphology is a key feature in the study of brain circuits, as it is highly related to information processing and functional identification. Neuronal morphology affects the process of integration of inputs from other neurons and determines the neurons which receive the output of the neurons. Different parts of the neurons can operate semi-independently according to the spatial location of the synaptic connections. As a result, there is considerable interest in the analysis of the microanatomy of nervous cells since it constitutes an excellent tool for better understanding cortical function. However, the morphologies, molecular features and electrophysiological properties of neuronal cells are extremely variable. Except for some special cases, this variability makes it hard to find a set of features that unambiguously define a neuronal type. In addition, there are distinct types of neurons in particular regions of the brain. This morphological variability makes the analysis and modeling of neuronal morphology a challenge. Uncertainty is a key feature in many complex real-world problems. Probability theory provides a framework for modeling and reasoning with uncertainty. Probabilistic graphical models combine statistical theory and graph theory to provide a tool for managing domains with uncertainty. In particular, we focus on Bayesian networks, the most commonly used probabilistic graphical model. In this dissertation, we design new methods for learning Bayesian networks and apply them to the problem of modeling and analyzing morphological data from neurons. The morphology of a neuron can be quantified using a number of measurements, e.g., the length of the dendrites and the axon, the number of bifurcations, the direction of the dendrites and the axon, etc. These measurements can be modeled as discrete or continuous data. The continuous data can be linear (e.g., the length or the width of a dendrite) or directional (e.g., the direction of the axon). These data may follow complex probability distributions and may not fit any known parametric distribution. Modeling this kind of problems using hybrid Bayesian networks with discrete, linear and directional variables poses a number of challenges regarding learning from data, inference, etc. In this dissertation, we propose a method for modeling and simulating basal dendritic trees from pyramidal neurons using Bayesian networks to capture the interactions between the variables in the problem domain. A complete set of variables is measured from the dendrites, and a learning algorithm is applied to find the structure and estimate the parameters of the probability distributions included in the Bayesian networks. Then, a simulation algorithm is used to build the virtual dendrites by sampling values from the Bayesian networks, and a thorough evaluation is performed to show the model’s ability to generate realistic dendrites. In this first approach, the variables are discretized so that discrete Bayesian networks can be learned and simulated. Then, we address the problem of learning hybrid Bayesian networks with different kinds of variables. Mixtures of polynomials have been proposed as a way of representing probability densities in hybrid Bayesian networks. We present a method for learning mixtures of polynomials approximations of one-dimensional, multidimensional and conditional probability densities from data. The method is based on basis spline interpolation, where a density is approximated as a linear combination of basis splines. The proposed algorithms are evaluated using artificial datasets. We also use the proposed methods as a non-parametric density estimation technique in Bayesian network classifiers. Next, we address the problem of including directional data in Bayesian networks. These data have some special properties that rule out the use of classical statistics. Therefore, different distributions and statistics, such as the univariate von Mises and the multivariate von Mises–Fisher distributions, should be used to deal with this kind of information. In particular, we extend the naive Bayes classifier to the case where the conditional probability distributions of the predictive variables given the class follow either of these distributions. We consider the simple scenario, where only directional predictive variables are used, and the hybrid case, where discrete, Gaussian and directional distributions are mixed. The classifier decision functions and their decision surfaces are studied at length. Artificial examples are used to illustrate the behavior of the classifiers. The proposed classifiers are empirically evaluated over real datasets. We also study the problem of interneuron classification. An extensive group of experts is asked to classify a set of neurons according to their most prominent anatomical features. A web application is developed to retrieve the experts’ classifications. We compute agreement measures to analyze the consensus between the experts when classifying the neurons. Using Bayesian networks and clustering algorithms on the resulting data, we investigate the suitability of the anatomical terms and neuron types commonly used in the literature. Additionally, we apply supervised learning approaches to automatically classify interneurons using the values of their morphological measurements. Then, a methodology for building a model which captures the opinions of all the experts is presented. First, one Bayesian network is learned for each expert, and we propose an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts is induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts is built. A thorough analysis of the consensus model identifies different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types can be defined by performing inference in the Bayesian multinet. These findings are used to validate the model and to gain some insights into neuron morphology. Finally, we study a classification problem where the true class label of the training instances is not known. Instead, a set of class labels is available for each instance. This is inspired by the neuron classification problem, where a group of experts is asked to individually provide a class label for each instance. We propose a novel approach for learning Bayesian networks using count vectors which represent the number of experts who selected each class label for each instance. These Bayesian networks are evaluated using artificial datasets from supervised learning problems. Resumen La morfología neuronal es una característica clave en el estudio de los circuitos cerebrales, ya que está altamente relacionada con el procesado de información y con los roles funcionales. La morfología neuronal afecta al proceso de integración de las señales de entrada y determina las neuronas que reciben las salidas de otras neuronas. Las diferentes partes de la neurona pueden operar de forma semi-independiente de acuerdo a la localización espacial de las conexiones sinápticas. Por tanto, existe un interés considerable en el análisis de la microanatomía de las células nerviosas, ya que constituye una excelente herramienta para comprender mejor el funcionamiento de la corteza cerebral. Sin embargo, las propiedades morfológicas, moleculares y electrofisiológicas de las células neuronales son extremadamente variables. Excepto en algunos casos especiales, esta variabilidad morfológica dificulta la definición de un conjunto de características que distingan claramente un tipo neuronal. Además, existen diferentes tipos de neuronas en regiones particulares del cerebro. La variabilidad neuronal hace que el análisis y el modelado de la morfología neuronal sean un importante reto científico. La incertidumbre es una propiedad clave en muchos problemas reales. La teoría de la probabilidad proporciona un marco para modelar y razonar bajo incertidumbre. Los modelos gráficos probabilísticos combinan la teoría estadística y la teoría de grafos con el objetivo de proporcionar una herramienta con la que trabajar bajo incertidumbre. En particular, nos centraremos en las redes bayesianas, el modelo más utilizado dentro de los modelos gráficos probabilísticos. En esta tesis hemos diseñado nuevos métodos para aprender redes bayesianas, inspirados por y aplicados al problema del modelado y análisis de datos morfológicos de neuronas. La morfología de una neurona puede ser cuantificada usando una serie de medidas, por ejemplo, la longitud de las dendritas y el axón, el número de bifurcaciones, la dirección de las dendritas y el axón, etc. Estas medidas pueden ser modeladas como datos continuos o discretos. A su vez, los datos continuos pueden ser lineales (por ejemplo, la longitud o la anchura de una dendrita) o direccionales (por ejemplo, la dirección del axón). Estos datos pueden llegar a seguir distribuciones de probabilidad muy complejas y pueden no ajustarse a ninguna distribución paramétrica conocida. El modelado de este tipo de problemas con redes bayesianas híbridas incluyendo variables discretas, lineales y direccionales presenta una serie de retos en relación al aprendizaje a partir de datos, la inferencia, etc. En esta tesis se propone un método para modelar y simular árboles dendríticos basales de neuronas piramidales usando redes bayesianas para capturar las interacciones entre las variables del problema. Para ello, se mide un amplio conjunto de variables de las dendritas y se aplica un algoritmo de aprendizaje con el que se aprende la estructura y se estiman los parámetros de las distribuciones de probabilidad que constituyen las redes bayesianas. Después, se usa un algoritmo de simulación para construir dendritas virtuales mediante el muestreo de valores de las redes bayesianas. Finalmente, se lleva a cabo una profunda evaluaci ón para verificar la capacidad del modelo a la hora de generar dendritas realistas. En esta primera aproximación, las variables fueron discretizadas para poder aprender y muestrear las redes bayesianas. A continuación, se aborda el problema del aprendizaje de redes bayesianas con diferentes tipos de variables. Las mixturas de polinomios constituyen un método para representar densidades de probabilidad en redes bayesianas híbridas. Presentamos un método para aprender aproximaciones de densidades unidimensionales, multidimensionales y condicionales a partir de datos utilizando mixturas de polinomios. El método se basa en interpolación con splines, que aproxima una densidad como una combinación lineal de splines. Los algoritmos propuestos se evalúan utilizando bases de datos artificiales. Además, las mixturas de polinomios son utilizadas como un método no paramétrico de estimación de densidades para clasificadores basados en redes bayesianas. Después, se estudia el problema de incluir información direccional en redes bayesianas. Este tipo de datos presenta una serie de características especiales que impiden el uso de las técnicas estadísticas clásicas. Por ello, para manejar este tipo de información se deben usar estadísticos y distribuciones de probabilidad específicos, como la distribución univariante von Mises y la distribución multivariante von Mises–Fisher. En concreto, en esta tesis extendemos el clasificador naive Bayes al caso en el que las distribuciones de probabilidad condicionada de las variables predictoras dada la clase siguen alguna de estas distribuciones. Se estudia el caso base, en el que sólo se utilizan variables direccionales, y el caso híbrido, en el que variables discretas, lineales y direccionales aparecen mezcladas. También se estudian los clasificadores desde un punto de vista teórico, derivando sus funciones de decisión y las superficies de decisión asociadas. El comportamiento de los clasificadores se ilustra utilizando bases de datos artificiales. Además, los clasificadores son evaluados empíricamente utilizando bases de datos reales. También se estudia el problema de la clasificación de interneuronas. Desarrollamos una aplicación web que permite a un grupo de expertos clasificar un conjunto de neuronas de acuerdo a sus características morfológicas más destacadas. Se utilizan medidas de concordancia para analizar el consenso entre los expertos a la hora de clasificar las neuronas. Se investiga la idoneidad de los términos anatómicos y de los tipos neuronales utilizados frecuentemente en la literatura a través del análisis de redes bayesianas y la aplicación de algoritmos de clustering. Además, se aplican técnicas de aprendizaje supervisado con el objetivo de clasificar de forma automática las interneuronas a partir de sus valores morfológicos. A continuación, se presenta una metodología para construir un modelo que captura las opiniones de todos los expertos. Primero, se genera una red bayesiana para cada experto y se propone un algoritmo para agrupar las redes bayesianas que se corresponden con expertos con comportamientos similares. Después, se induce una red bayesiana que modela la opinión de cada grupo de expertos. Por último, se construye una multired bayesiana que modela las opiniones del conjunto completo de expertos. El análisis del modelo consensuado permite identificar diferentes comportamientos entre los expertos a la hora de clasificar las neuronas. Además, permite extraer un conjunto de características morfológicas relevantes para cada uno de los tipos neuronales mediante inferencia con la multired bayesiana. Estos descubrimientos se utilizan para validar el modelo y constituyen información relevante acerca de la morfología neuronal. Por último, se estudia un problema de clasificación en el que la etiqueta de clase de los datos de entrenamiento es incierta. En cambio, disponemos de un conjunto de etiquetas para cada instancia. Este problema está inspirado en el problema de la clasificación de neuronas, en el que un grupo de expertos proporciona una etiqueta de clase para cada instancia de manera individual. Se propone un método para aprender redes bayesianas utilizando vectores de cuentas, que representan el número de expertos que seleccionan cada etiqueta de clase para cada instancia. Estas redes bayesianas se evalúan utilizando bases de datos artificiales de problemas de aprendizaje supervisado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-parametric belief propagation (NBP) is a well-known message passing method for cooperative localization in wireless networks. However, due to the over-counting problem in the networks with loops, NBP’s convergence is not guaranteed, and its estimates are typically less accurate. One solution for this problem is non-parametric generalized belief propagation based on junction tree. However, this method is intractable in large-scale networks due to the high-complexity of the junction tree formation, and the high-dimensionality of the particles. Therefore, in this article, we propose the non-parametric generalized belief propagation based on pseudo-junction tree (NGBP-PJT). The main difference comparing with the standard method is the formation of pseudo-junction tree, which represents the approximated junction tree based on thin graph. In addition, in order to decrease the number of high-dimensional particles, we use more informative importance density function, and reduce the dimensionality of the messages. As by-product, we also propose NBP based on thin graph (NBP-TG), a cheaper variant of NBP, which runs on the same graph as NGBP-PJT. According to our simulation and experimental results, NGBP-PJT method outperforms NBP and NBP-TG in terms of accuracy, computational, and communication cost in reasonably sized networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cognitive wireless sensor network (CWSN) is a new paradigm, integrating cognitive features in traditional wireless sensor networks (WSNs) to mitigate important problems such as spectrum occupancy. Security in cognitive wireless sensor networks is an important problem since these kinds of networks manage critical applications and data. The specific constraints of WSN make the problem even more critical, and effective solutions have not yet been implemented. Primary user emulation (PUE) attack is the most studied specific attack deriving from new cognitive features. This work discusses a new approach, based on anomaly behavior detection and collaboration, to detect the primary user emulation attack in CWSN scenarios. Two non-parametric algorithms, suitable for low-resource networks like CWSNs, have been used in this work: the cumulative sum and data clustering algorithms. The comparison is based on some characteristics such as detection delay, learning time, scalability, resources, and scenario dependency. The algorithms have been tested using a cognitive simulator that provides important results in this area. Both algorithms have shown to be valid in order to detect PUE attacks, reaching a detection rate of 99% and less than 1% of false positives using collaboration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A spatial-color-based non-parametric background-foreground modeling strategy in a GPGPU by using CUDA is proposed. This strategy is suitable for augmented-reality applications, providing real-time high-quality results in a great variety of scenarios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The last generation of consumer electronic devices is endowed with Augmented Reality (AR) tools. These tools require moving object detection strategies, which should be fast and efficient, to carry out higher level object analysis tasks. We propose a lightweight spatio-temporal-based non-parametric background-foreground modeling strategy in a General Purpose Graphics Processing Unit (GPGPU), which provides real-time high-quality results in a great variety of scenarios and is suitable for AR applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities is found. We illustrate and study the methods using data sampled from known parametric distributions, and we demonstrate their applicability by learning models based on real neuroscience data. Finally, we compare the performance of the proposed methods with an approach for learning mixtures of truncated basis functions (MoTBFs). The empirical results show that the proposed methods generally yield models that are comparable to or significantly better than those found using the MoTBF-based method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work proposes an optimization of a semi-supervised Change Detection methodology based on a combination of Change Indices (CI) derived from an image multitemporal data set. For this purpose, SPOT 5 Panchromatic images with 2.5 m spatial resolution have been used, from which three Change Indices have been calculated. Two of them are usually known indices; however the third one has been derived considering the Kullbak-Leibler divergence. Then, these three indices have been combined forming a multiband image that has been used in as input for a Support Vector Machine (SVM) classifier where four different discriminant functions have been tested in order to differentiate between change and no_change categories. The performance of the suggested procedure has been assessed applying different quality measures, reaching in each case highly satisfactory values. These results have demonstrated that the simultaneous combination of basic change indices with others more sophisticated like the Kullback-Leibler distance, and the application of non-parametric discriminant functions like those employees in the SVM method, allows solving efficiently a change detection problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El presente trabajo consistió en el desarrollo de una intervención nutricional a largo plazo llevada a cabo con jugadores profesionales de baloncesto, en función al cumplimiento de las recomendaciones nutricionales, con los siguientes dos objetivos: 1) valorar los cambios que dicha intervención produce sobre las prácticas nutricionales diarias de estos deportistas y 2) conocer la influencia de las modificaciones nutricionales producidas sobre la tasa de percepción del esfuerzo por sesión (RPE-Sesión) y la fatiga, a lo largo de una temporada competitiva, tanto para entrenamientos como partidos oficiales. Los objetivos del estudio se fundamentan en: 1) la numerosa evidencia científica que muestra la inadecuación de los hábitos nutricionales de los jugadores de baloncesto y otros deportistas respecto a las recomendaciones nutricionales; 2) el hecho ampliamente reconocido en la literatura especializada de que una ingesta nutricional óptima permite maximizar el rendimiento deportivo (a nivel físico y cognitivo), promoviendo una rápida recuperación y disminuyendo el riesgo de enfermedades y lesiones deportivas. No obstante, pocos estudios han llevado a cabo una intervención nutricional a largo plazo para mejorar los hábitos alimentarios de los deportistas y ninguno de ellos fue realizado con jugadores de baloncesto; 3) la elevada correlación entre la percepción del esfuerzo (RPE) y variables fisiológicas relacionadas al desarrollo de un ejercicio (por ej.: frecuencia cardíaca, consumo máximo de oxígeno o lactato sanguíneo) y los múltiples estudios que muestran la atenuación de la RPE durante la realización del ejercicio mediante una ingesta puntual de nutrientes, (especialmente de hidratos de carbono) aunque ninguno fue desarrollado en baloncesto; 4) el estudio incipiente de la relación entre la ingesta nutricional y la RPE-Sesión, siendo éste un método validado en baloncesto y otros deportes de equipo como indicador de la carga de trabajo interna, el rendimiento deportivo y la intensidad del ejercicio realizado; 5) el hecho de que la fatiga constituye uno de los principales factores influyentes en la percepción del esfuerzo y puede ser retrasada y/o atenuada mediante la ingesta de carbohidratos, pudiendo disminuir consecuentemente la RPE-Sesión y la carga interna del esfuerzo físico, potenciando el rendimiento deportivo y las adaptaciones inducidas por el entrenamiento; 6) la reducida evidencia acerca del comportamiento de la RPE-Sesión ante la modificación de la ingesta de nutrientes, encontrándose sólo un estudio llevado a cabo en baloncesto y 7) la ausencia de investigaciones acerca de la influencia que puede tener la mejora del patrón nutricional de los jugadores sobre la RPE-Sesión y la fatiga, desconociéndose si la adecuación de los hábitos nutricionales conduce a una disminución de estas variables en el largo plazo para todos los entrenamientos y partidos oficiales a nivel profesional. Por todo esto, este trabajo comienza con una introducción que presenta el marco teórico de la importancia y función de la nutrición en el deporte, así como de las recomendaciones nutricionales actuales a nivel general y para baloncesto. Además, se describen las intervenciones nutricionales llevadas a cabo previamente con otros deportistas y las consecuentes modificaciones sobre el patrón alimentario, coincidiendo este aspecto con el primer objetivo del presente estudio. Posteriormente, se analiza la RPE, la RPE-Sesión y la fatiga, focalizando el estudio en la relación de dichas variables con la carga de trabajo físico, la intensidad del entrenamiento, el rendimiento deportivo y la recuperación post ejercicio. Finalmente, se combinan todos los aspectos mencionados: ingesta nutricional, RPE percepción del esfuerzo y fatiga, con el fin de conocer la situación actual del estudio de la relación entre dichas variables, conformando la base del segundo objetivo de este estudio. Seguidamente, se exponen y fundamentan los objetivos antes mencionados, para dar lugar después a la explicación de la metodología utilizada en el presente estudio. Ésta consistió en un diseño de estudios de caso, aplicándose una intervención nutricional personalizada a tres jugadores de baloncesto profesional (cada jugador = un estudio de caso; n = 1), con el objetivo de adecuar su ingesta nutricional en el largo plazo a las recomendaciones nutricionales. A su vez, se analizó la respuesta individual de cada uno de los casos a dicha intervención para los dos objetivos del estudio. Para ello, cada jugador completó un registro diario de alimentos (7 días; pesada de alimentos) antes, durante y al final de la intervención. Además, los sujetos registraron diariamente a lo largo del estudio la RPE-Sesión y la fatiga en entrenamientos físicos y de balón y en partidos oficiales de liga, controlándose además en forma cuantitativa otras variables influyentes como el estado de ánimo y el sueño. El análisis de los datos consistió en el cálculo de los estadísticos descriptivos para todas las variables, la comparación de la ingesta en los diferentes momentos evaluados con las recomendaciones nutricionales y una comparación de medias no paramétrica entre el período pre intervención y durante la intervención con el test de Wilcoxon (medidas repetidas) para todas las variables. Finalmente, se relacionaron los cambios obtenidos en la ingesta nutricional con la percepción del esfuerzo y la fatiga y la posible influencia del estado de ánimo y el sueño, a través de un estudio correlacional (Tau_b de Kendall). Posteriormente, se presentan los resultados obtenidos y la discusión de los mismos, haciendo referencia a la evidencia científica relacionada que se encuentra publicada hasta el momento, la cual facilitó el análisis de la relación entre RPE-Sesión, fatiga y nutrición a lo largo de una temporada. Los principales hallazgos y su correspondiente análisis, por lo tanto, pueden resumirse en los siguientes: 1) los tres jugadores de baloncesto profesional presentaron inicialmente hábitos nutricionales inadecuados, haciendo evidente la necesidad de un nutricionista deportivo dentro del cuerpo técnico de los equipos profesionales; 2) las principales deficiencias correspondieron a un déficit pronunciado de energía e hidratos de carbono, que fueron reducidas con la intervención nutricional; 3) la ingesta excesiva de grasa total, ácidos grasos saturados, etanol y proteínas que se halló en alguno/s de los casos, también se adecuó a las recomendaciones después de la intervención; 4) la media obtenida durante un período de la temporada para la RPE-Sesión y la fatiga de entrenamientos, podría ser disminuida en un jugador individual mediante el incremento de su ingesta de carbohidratos a largo plazo, siempre que no existan alteraciones psico-emocionales relevantes; 5) el comportamiento de la RPE-Sesión de partidos oficiales no parece estar influido por los factores nutricionales modificados en este estudio, dependiendo más de la variación de elementos externos no controlables, intrínsecos a los partidos de baloncesto profesional. Ante estos resultados, se pudo observar que las diferentes características de los jugadores y las distintas respuestas obtenidas después de la intervención, reforzaron la importancia de utilizar un diseño de estudio de casos para el análisis de los deportistas de élite y, asimismo, de realizar un asesoramiento nutricional personalizado. Del mismo modo, la percepción del esfuerzo y la fatiga de cada jugador evolucionaron de manera diferente después de la intervención nutricional, lo cual podría depender de las diferentes características de los sujetos, a nivel físico, psico-social, emocional y contextual. Por ello, se propone que el control riguroso de las variables cualitativas que parecen influir sobre la RPE y la fatiga a largo plazo, facilitaría la comprensión de los datos y la determinación de factores desconocidos que influyen sobre estas variables. Finalmente, al ser la RPE-Sesión un indicador directo de la carga interna del entrenamiento, es decir, del estrés psico-fisiológico experimentado por el deportista, la posible atenuación de esta variable mediante la adecuación de los hábitos nutricionales, permitiría aplicar las cargas externas de entrenamiento planificadas, con menor estrés interno y mejor recuperación entre sesiones, disminuyendo también la sensación de fatiga, a pesar del avance de la temporada. ABSTRACT This study consisted in a long-term nutritional intervention carried out with professional basketball players according to nutritional recommendations, with the following two main objectives: 1) to evaluate the changes produced by the intervention on daily nutritional practices of these athletes and 2) to determine the influence of long term nutritional intake modifications on the rate of perceived exertion per session (Session-RPE) and fatigue, throughout a competitive season for training as well as competition games. These objectives are based on: 1) much scientific evidence that shows an inadequacy of the nutritional habits of basketball players and other athletes regarding nutritional recommendations; 2) the fact widely recognized in the scientific literature that an optimal nutrition allows to achieve the maximum performance of an athlete (both physically and cognitively), promoting fast recovery and decreasing risks of sports injuries and illnesses. However, only few studies carried out a long term nutritional intervention to improve nutritional practices of athletes and it could not be found any research with basketball players; 3) the high correlation between the rate of perceived exertion (RPE) and physiological variables related to the performance of physical exercise (e.g.: heart rate, maximum consumption of oxygen or blood lactate) and multiple studies showing the attenuation of RPE during exercise due to the intake of certain nutrients (especially carbohydrates), while none of them was developed in basketball; 4) correlation between nutritional intake and Session-RPE has been recently studied for the first time. Session-RPE method has been validated in basketball players and other team sports as an indicator of internal workload, sports performance and exercise intensity; 5) fatigue is considered one of the main influential factor on RPE and sport performance. It has also been observed that carbohydrates intake may delay or mitigate the onset of fatigue and, thus, decrease the perceived exertion and the internal training load, which could improve sports performance and training-induced adaptations; 6) there are few studies evaluating the influence of nutrient intake on Session-RPE and only one of them has been carried out with basketball players. Moreover, it has not been analyzed the possible effects of the adequacy of players’ nutritional habits through a nutritional intervention on Session-RPE and fatigue, variables that could be decreased for all training session and competition games because of an improvement of daily nutritional intake. Therefore, this work begins with an introduction that provides the conceptual framework of this research focused on the key role of nutrition in sport, as well as on the current nutritional recommendations for athletes and specifically for basketball players. In addition, previous nutritional interventions carried out with other athletes are described, as well as consequential modifications on their food pattern, coinciding with the first objective of the present study. Subsequently, RPE, Session-RPE and fatigue are analyzed, with focus on their correlation with physical workload, training intensity, sports performance and recovery. Finally, all the aforementioned aspects (nutritional intake, RPE and fatigue) were combined in order to know the current status of the relation between each other, this being the base for the second objective of this study. Subsequently, the objectives mentioned above are explained, continuing with the explanation of the methodology used in the study. The methodology consisted of a case-study design, carrying out a long term nutritional intervention with three professional basketball players (each player = one case study; n = 1), in order to adapt their nutritional intake to nutritional recommendations. At the same time, the individual response of each player to the intervention was analyzed for the two main objectives of the study. Each player completed a food diary (7 days; weighing food) in three moments: before, during and at the end of the intervention. In addition, the Session-RPE and fatigue were daily recorded throughout the study for all trainings (training with ball and resistance training) and competition games. At the same time, other potentially influential variables such as mood state and sleeping were daily controlled throughout the study. Data analysis consisted in descriptive statistics calculation for all the variables of the study, the comparison between nutritional intake (evaluated at different times) and nutritional recommendations and a non-parametric mean comparison between pre intervention and during intervention periods was made by Wilcoxon test (repeated measurements) for all variables too. Finally, the changes in nutritional intake, mood state and sleeping were correlated with the perceived exertion and fatigue through correctional study (Tau_b de Kendall). After the methodology, the study results and the associated discussion are presented. The discussion is based on the current scientific evidence that contributes to understand the relation between Session-RPE, fatigue and nutrition throughout the competitive season. The main findings and results analysis can be summarized as follows: 1) the three professional basketball players initially had inadequate nutritional habits and this clearly shows the need of a sports nutritionist in the coaching staff of professional teams; (2) the major deficiencies of the three players’ diet corresponded to a pronounced deficit of energy intake and carbohydrates consumption which were reduced with nutritional intervention; (3) the excessive intake of total fat, saturated fatty acids, ethanol and protein found in some cases were also adapted to the recommendations after the intervention; (4) Session-RPE mean and fatigue of a certain period of the competition season, could be decreased in an individual player by increasing his carbohydrates intake in the long term, if there are no relevant psycho-emotional disorders; (5) the behavior of the Session-RPE in competition games does not seem to be influenced by the nutritional factors modified in this study. They seem to depend much more on the variation of external non-controllable factors associated with the professional basketball games. Given these results, the different characteristics of each player and the diverse responses observed after the intervention in each individual for all the variables, reinforced the importance of the use of a case study design for research with elite athletes as well as personalized nutritional counselling. In the same way, the different responses obtained for RPE and fatigue in the long term for each player due to modification of nutritional habits, show that there is a dependence of such variables on the physical, psychosocial, emotional and contextual characteristics of each player. Therefore it is proposed that the rigorous control of the qualitative variables that seem to influence the RPE and fatigue in the long term, may facilitate the understanding of data and the determination of unknown factors that could influence these variables. Finally, because Session-RPE is a direct indicator of the internal load of training (psycho-physiological stress experienced by the athlete), the possible attenuation of Session-RPE through the improvement in nutritional habits, would allow to apply the planned external loads of training with less internal stress and better recovery between sessions, with a decrease in fatigue, despite of the advance of the season.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este estudio pretende estimar la eficiencia y la productividad de las principales provincias de la producción de trigo en Egipto. Los datos utilizados en este estudio son datos de panel a nivel de provincias del período 1990-2012, obtenidos del Ministerio de Agricultura y Recuperación Tierras, y de la Agencia Central de Movilización Pública y Estadística, Egipto. Se aplica el enfoque de fronteras estocásticas para medir la eficiencia (función de producción de Cobb-Douglas) y se emplean las especificaciones de Battese y Coelli (1992) y (1995). También se utiliza el índice de Malmquist como una aproximación no paramétrica (Análisis de Envolvente de Datos) para descomponer la productividad total de los factores de las principales provincias productoras de trigo en Egipto en cambio técnico y cambio de eficiencia. El coeficiente de tierra es positivo y significativo en los dos especificaciones Battese y Coelli (1992) y (1995), lo que implica que aumentar la tierra para este cultivo aumentaría significativamente la producción de trigo. El coeficiente de trabajo es positivo y significativo en la especificación de Battese y Coelli (1992), mientras que es positivo y no significativo en la especificación de Battese y Coelli (1995). El coeficiente de la maquinaria es negativo y no significativo en las dos especificaciones de Battese y Coelli (1992) y (1995). El coeficiente de cambio técnico es positivo y no significativo en la especificación de Battese y Coelli (1992), mientras que es positiva y significativo en la especificación de Battese y Coelli (1995). Las variables de efectos del modelo de ineficiencia Battese y Coelli (1995) indican que no existe impacto de las diferentes provincias en la producción de trigo en Egipto; la ineficiencia técnica de la producción de trigo tendió a disminuir durante el período de estudio; y no hay ningún impacto de género en la producción de trigo en Egipto. Los niveles de eficiencia técnica varían entre las diferentes provincias para las especificaciones de Battese y Coelli (1992) y (1995); el nivel mínimo medio de eficiencia técnica es 91.61% en la provincia de Fayoum, mientras que el nivel máximo medio de la eficiencia técnica es 98.69% en la provincia de Dakahlia. La eficiencia técnica toma un valor medio de 95.37%, lo que implica poco potencial para mejorar la eficiencia de uso de recursos en la producción de trigo. La TFPCH de la producción de trigo en Egipto durante el período 1990-2012 tiene un valor menor que uno y muestra un declive. Esta disminución es debida más al componente de cambio técnico que al componente de cambio de eficiencia. La disminución de TFPCH mejora con el tiempo. La provincia de Menoufia tiene la menor disminución en TFPCH, 6.5%, mientras que dos provincias, Sharkia y Dakahlia, son las que más disminuyen en TFPCH, 13.1%, en cada uno de ellas. Menos disminución en TFPCH ocurre en el período 2009-2010, 0.3%, mientras que más disminución se produce en TFPCH en el período 1990-1991, 38.9%. La disminución de la PTF de la producción de trigo en Egipto se atribuye principalmente a la mala aplicación de la tecnología. ABSTRACT The objectives of this study are to estimate the efficiency and productivity of the main governorates of wheat production in Egypt. The data used in this study is a panel data at the governorates level, it represents the time period 1990-2012 and taken from the Ministry of Agriculture and Land Reclamation, and the Central Agency for Public Mobilization and Statistics, Egypt. We apply the stochastic frontier approach for efficiency measurement (Cobb-Douglas production function) and the specifications of Battese and Coelli (1992) and (1995) are employed. Also we use Malmquist TFP index as a non-parametric approach (DEA) to decompose total factor productivity of the main governorates of wheat production in Egypt into technical change and efficiency change. The coefficient of land is positive and significant at Battese and Coelli (1992) and (1995) specifications, implying that increasing the wheat area could significantly enhance the production of wheat. The coefficient of labor is positive and significant at Battese and Coelli (1992) specification, while it is positive and insignificant at Battese and Coelli (1995) specification. The coefficient of machinery is negative and insignificant at the specifications of Battese and Coelli (1992) and (1995). The technical change coefficient is positive and insignificant at Battese and Coelli (1992) specification, while it is positive and significant at Battese and Coelli (1995) specification. The variables of the inefficiency effect model indicate that there is no impact from the location of the different governorates on wheat production in Egypt, the technical inefficiency of wheat production tended to decrease through the period of study, and there is no impact from the gender on wheat production in Egypt. The levels of technical efficiency vary among the different governorates for the specifications of Battese and Coelli (1992) and (1995); the minimum mean level of technical efficiency is 91.61% at Fayoum governorate, while the maximum mean level of technical efficiency is 98.69% at Dakahlia governorate. The technical efficiency takes an average value of 95.37%, this implying that little potential exists to improve resource use efficiency in wheat production. The TFPCH of wheat production in Egypt during the time period 1990-2012 has a value less than one and shows a decline; this decline is due mainly to the technical change component than the efficiency change component. The decline in TFPCH is generally improves over time. Menoufia governorate has the least declining in TFPCH by 6.5%, while two governorates, Sharkia and Dakahlia have the most declining in TFPCH by 13.1% for each of them. The least declining in TFPCH occurred at the period 2009- 2010 by 0.3%, while the most declining in TFPCH occurred at the period 1990-1991 by 38.9%. The declining in TFP of wheat production in Egypt is attributed mainly to poor application of technology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tesis doctoral presenta el desarrollo, verificación y aplicación de un método original de regionalización estadística para generar escenarios locales de clima futuro de temperatura y precipitación diarias, que combina dos pasos. El primer paso es un método de análogos: los "n" días cuya configuración atmosférica de baja resolución es más parecida a la del día problema, se seleccionan de un banco de datos de referencia del pasado. En el segundo paso, se realiza un análisis de regresión múltiple sobre los "n" días más análogos para la temperatura, mientras que para la precipitación se utiliza la distribución de probabilidad de esos "n" días análogos para obtener la estima de precipitación. La verificación de este método se ha llevado a cabo para la España peninsular y las Islas Baleares. Los resultados muestran unas buenas prestaciones para temperatura (BIAS cerca de 0.1ºC y media de errores absolutos alrededor de 1.9ºC); y unas prestaciones aceptables para la precipitación (BIAS razonablemente bajo con una media de -18%; error medio absoluto menor que para una simulación de referencia (la persistencia); y una distribución de probabilidad simulada similar a la observada según dos test no-paramétricos de similitud). Para mostrar la aplicabilidad de la metodología desarrollada, se ha aplicado en detalle en un caso de estudio. El método se aplicó a cuatro modelos climáticos bajo diferentes escenarios futuros de emisiones de gases de efecto invernadero, para la región de Aragón, produciendo así proyecciones futuras de precipitación y temperaturas máximas y mínimas diarias. La fiabilidad de la técnica de regionalización fue evaluada de nuevo para el caso de estudio mediante un proceso de verificación. Para determinar la capacidad de los modelos climáticos para simular el clima real, sus simulaciones del pasado (la denominada salida 20C3M) se regionalizaron y luego se compararon con el clima observado (los resultados son bastante robustos para la temperatura y menos concluyentes para la precipitación). Las proyecciones futuras a escala local presentan un aumento significativo durante todo el siglo XXI de las temperaturas máximas y mínimas para todos los futuros escenarios de emisiones considerados. Las simulaciones de precipitación presentan mayores incertidumbres. Además, la aplicabilidad práctica del método se demostró también mediante su utilización para producir escenarios climáticos futuros para otros casos de estudio en los distintos sectores y regiones del mundo. Se ha prestado especial atención a una aplicación en Centroamérica, una región que ya está sufriendo importantes impactos del cambio climático y que tiene un clima muy diferente. ABSTRACT This doctoral thesis presents the development, verification and application of an original downscaling method for daily temperature and precipitation, which combines two statistical approaches. The first step is an analogue approach: the “n” days most similar to the day to be downscaled are selected. In the second step, a multiple regression analysis using the “n” most analogous days is performed for temperature, whereas for precipitation the probability distribution of the “n” analogous days is used to obtain the amount of precipitation. Verification of this method has been carried out for the Spanish Iberian Peninsula and the Balearic Islands. Results show good performance for temperature (BIAS close to 0.1ºC and Mean Absolute Errors around 1.9ºC); and an acceptable skill for precipitation (reasonably low BIAS with a mean of - 18%, Mean Absolute Error lower than for a reference simulation, i.e. persistence, and a well-simulated probability distribution according to two non-parametric tests of similarity). To show the applicability of the method, a study case has been analyzed. The method was applied to four climate models under different future emission scenarios for the region of Aragón, thus producing future projections of daily precipitation and maximum and minimum temperatures. The reliability of the downscaling technique was re-assessed for the study case by a verification process. To determine the ability of the climate models to simulate the real climate, their simulations of the past (the 20C3M output) were downscaled and then compared with the observed climate – the results are quite robust for temperature and less conclusive for the precipitation. The downscaled future projections exhibit a significant increase during the entire 21st century of the maximum and minimum temperatures for all the considered future emission scenarios. Precipitation simulations exhibit greater uncertainties. Furthermore, the practical applicability of the method was demonstrated also by using it to produce future climate scenarios for some other study cases in different sectors and regions of the world. Special attention was paid to an application of the method in Central America, a region that is already suffering from significant climate change impacts and that has a very different climate from others where the method was previously applied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose The demand of rice by the increase in population in many countries has intensified the application of pesticides and the use of poor quality water to irrigate fields. The terrestrial environment is one compartment affected by these situations, where soil is working as a reservoir, retaining organic pollutants. Therefore, it is necessary to develop methods to determine insecticides in soil and monitor susceptible areas to be contaminated, applying adequate techniques to remediate them. Materials and methods This study investigates the occurrence of ten pyrethroid insecticides (PYs) and its spatio-temporal variance in soil at two different depths collected in two periods (before plow and during rice production), in a paddy field area located in the Mediterranean coast. Pyrethroids were quantified using gas chromatography?mass spectrometry (GC?MS) after ultrasound-assisted extraction with ethyl acetate. The results obtained were assessed statistically using non-parametric methods, and significant statistical differences (p < 0.05) in pyrethroids content with soil depth and proximity to wastewater treatment plants were evaluated. Moreover, a geographic information system (GIS) was used to monitor the occurrence of PYs in paddy fields and detect risk areas. Results and discussion Pyrethroids were detected at concentrations ?57.0 ng g?1 before plow and ?62.3 ng g?1 during rice production, being resmethrin and cyfluthrin the compounds found at higher concentrations in soil. Pyrethroids were detected mainly at the top soil, and a GIS program was used to depict the obtained results, showing that effluents from wastewater treatment plants (WWTPs) were the main sources of soil contamination. No toxic effects were expected to soil organisms, but it is of concern that PYs may affect aquatic organisms, which represents the worst case scenario. Conclusions A methodology to determine pyrethroids in soil was developed to monitor a paddy field area. The use of water fromWWTPs to irrigate rice fields is one of the main pollution sources of pyrethroids. It is a matter of concern that PYs may present toxic effects on aquatic organisms, as they can be desorbed from soil. Phytoremediation may play an important role in this area, reducing the possible risk associated to PYs levels in soil.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the experimental results obtained by applying frequency-domain structural health monitoring techniques to assess the damage suffered on a special type of damper called Web Plastifying Damper (WPD). The WPD is a hysteretic type energy dissipator recently developed for the passive control of structures subjected to earthquakes. It consists of several I-section steel segments connected in parallel. The energy is dissipated through plastic deformations of the web of the I-sections, which constitute the dissipative parts of the damper. WPDs were subjected to successive histories of dynamically-imposed cyclic deformations of increasing magnitude with the shaking table of the University of Granada. To assess the damage to the web of the I-section steel segments after each history of loading, a new damage index called Area Index of Damage (AID) was obtained from simple vibration tests. The vibration signals were acquired by means of piezoelectric sensors attached on the I-sections, and non-parametric statistical methods were applied to calculate AID in terms of changes in frequency response functions. The damage index AID was correlated with another energy-based damage index-ID- which past research has proven to accurately characterize the level of mechanical damage. The ID is rooted in the decomposition of the load-displacement curve experienced by the damper into the so-called skeleton and Bauschinger parts. ID predicts the level of damage and the proximity to failure of the damper accurately, but it requires costly instrumentation. The experiments reported in this paper demonstrate a good correlation between AID and ID in a realistic seismic loading scenario consisting of dynamically applied arbitrary cyclic loads. Based on this correlation, it is possible to estimate ID indirectly from the AID, which calls for much simpler and less expensive instrumentation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este estudo investigou os efeitos do laser de baixa intensidade na velocidade da movimentação ortodôntica de caninos submetidos à retração inicial. A amostra constou de 26 caninos superiores e inferiores, submetidos à retração inicial realizada com mola Niti, com força de 150g. Um dos caninos foi irradiado com laser de diodo, seguindo o protocolo de aplicação: 780nm/20mW/5Jcm2/0,2J por ponto/Et=2J, nos dias 0, 3 e 7 pós-ativação, sendo que o contralateral foi considerado placebo. A retração durou em média 4 meses, num total de 9 aplicações de laser. Os modelos de cada mês foram escaneados com scanner 3D (3Shape) e as imagens tridimensionais foram analisadas por meio do Software Geomagic Studio 5, para a mensuração da quantidade de movimentação dos caninos retraídos. Foi empregada a Análise de Variância a três critérios, seguida pelo teste de Tukey (p<0,05). Para verificação da integridade tecidual, foram efetuadas radiografias periapicais iniciais e finais dos caninos retraídos e dos molares, nas quais foram avaliados uma possível reabsorção na crista alveolar, por meio da distância da crista óssea alveolar até a junção cemento-esmalte e os níveis de reabsorção radicular, por meio do índice de Levander e Malmgreen, sendo este último avaliado somente nos caninos retraídos. Para isto, foi empregado o teste não paramétrico de Wilcoxon (p<0,05). Os resultados indicaram que houve um aumento estatisticamente significante na velocidade da movimentação dos caninos irradiados comparados ao seu contralateral, em todos os tempos avaliados, como também a preservação da integridade tecidual. Com isso, concluiu-se que o laser de diodo pode acelerar a movimentação ortodôntica, podendo contribuir para a diminuição do tempo de tratamento.(AU)