687 resultados para Nigerian fraud
In situ sediment temperature measurements at ten stations in pockmark A from the Guineco-MeBo cruise
Resumo:
Democracy is not necessarily consolidated simply by the introduction of formal democratic institutions. It is often observed in new democracies that democratic institutions are neglected and eroded in actual practice. Particularly, electoral fraud committed by a ruler is one of the main problems in this regard. This paper deals with two questions, (1) under what conditions does a ruler have an incentive to hold fair elections (or to rig elections), and (2) what makes a ruler prefer to establish an independent election governing institution? Assuming that a ruler prefers to maintain her power, basically she has an incentive to rig elections in order to be victorious in the political competition. A ruler, however, faces the risk of losing power if the opposition stages successful protests on a sufficiently large scale. If opponents are able to pose a credible threat to a ruler, she will have an incentive to hold fair elections. The problem is that information on electoral fraud is not shared by every player in the game. For the opposition, imperfect information deepens their coordination problems. Imperfect information, on the other hand, in some cases causes a problem for a ruler. If the opposition is sufficiently cohesive and have little tolerance of cheating, even unverified suspicions of fraud may trigger menacing protests. In such a case, a ruler has an incentive to establish an independent election commission to avoid unnecessary collisions by revealing the nature of the elections.
Resumo:
The difficulty of holding fair elections continues to be a critical problem in many newly democratized countries. The core of the problem is the electoral administration's lack of political autonomy and capability to regulate fraud. This paper seeks to identify the conditions for establishing an autonomous and capable electoral administration system. An electoral administration system has two main functions: to disclose the nature of elections and to prevent fraud. We argue in this paper that an autonomous and capable electoral administration system exists if the major political players have the incentive to disclose the information on the elections and to secure the ruler's credible commitment to fair elections. We examine this argument through comparative case studies of Korea and the Philippines. Despite similar historical and institutional settings, their election commissions exhibit contrasting features. The difference in the incentive structures of the major political players seems to have caused the divergence in the institutional evolution of the election commissions in the two countries.
Resumo:
To date, big data applications have focused on the store-and-process paradigm. In this paper we describe an initiative to deal with big data applications for continuous streams of events. In many emerging applications, the volume of data being streamed is so large that the traditional ‘store-then-process’ paradigm is either not suitable or too inefficient. Moreover, soft-real time requirements might severely limit the engineering solutions. Many scenarios fit this description. In network security for cloud data centres, for instance, very high volumes of IP packets and events from sensors at firewalls, network switches and routers and servers need to be analyzed and should detect attacks in minimal time, in order to limit the effect of the malicious activity over the IT infrastructure. Similarly, in the fraud department of a credit card company, payment requests should be processed online and need to be processed as quickly as possible in order to provide meaningful results in real-time. An ideal system would detect fraud during the authorization process that lasts hundreds of milliseconds and deny the payment authorization, minimizing the damage to the user and the credit card company.
Resumo:
In recent years, applications in domains such as telecommunications, network security or large scale sensor networks showed the limits of the traditional store-then-process paradigm. In this context, Stream Processing Engines emerged as a candidate solution for all these applications demanding for high processing capacity with low processing latency guarantees. With Stream Processing Engines, data streams are not persisted but rather processed on the fly, producing results continuously. Current Stream Processing Engines, either centralized or distributed, do not scale with the input load due to single-node bottlenecks. Moreover, they are based on static configurations that lead to either under or over-provisioning. This Ph.D. thesis discusses StreamCloud, an elastic paralleldistributed stream processing engine that enables for processing of large data stream volumes. Stream- Cloud minimizes the distribution and parallelization overhead introducing novel techniques that split queries into parallel subqueries and allocate them to independent sets of nodes. Moreover, Stream- Cloud elastic and dynamic load balancing protocols enable for effective adjustment of resources depending on the incoming load. Together with the parallelization and elasticity techniques, Stream- Cloud defines a novel fault tolerance protocol that introduces minimal overhead while providing fast recovery. StreamCloud has been fully implemented and evaluated using several real word applications such as fraud detection applications or network analysis applications. The evaluation, conducted using a cluster with more than 300 cores, demonstrates the large scalability, the elasticity and fault tolerance effectiveness of StreamCloud. Resumen En los útimos años, aplicaciones en dominios tales como telecomunicaciones, seguridad de redes y redes de sensores de gran escala se han encontrado con múltiples limitaciones en el paradigma tradicional de bases de datos. En este contexto, los sistemas de procesamiento de flujos de datos han emergido como solución a estas aplicaciones que demandan una alta capacidad de procesamiento con una baja latencia. En los sistemas de procesamiento de flujos de datos, los datos no se persisten y luego se procesan, en su lugar los datos son procesados al vuelo en memoria produciendo resultados de forma continua. Los actuales sistemas de procesamiento de flujos de datos, tanto los centralizados, como los distribuidos, no escalan respecto a la carga de entrada del sistema debido a un cuello de botella producido por la concentración de flujos de datos completos en nodos individuales. Por otra parte, éstos están basados en configuraciones estáticas lo que conducen a un sobre o bajo aprovisionamiento. Esta tesis doctoral presenta StreamCloud, un sistema elástico paralelo-distribuido para el procesamiento de flujos de datos que es capaz de procesar grandes volúmenes de datos. StreamCloud minimiza el coste de distribución y paralelización por medio de una técnica novedosa la cual particiona las queries en subqueries paralelas repartiéndolas en subconjuntos de nodos independientes. Ademas, Stream- Cloud posee protocolos de elasticidad y equilibrado de carga que permiten una optimización de los recursos dependiendo de la carga del sistema. Unidos a los protocolos de paralelización y elasticidad, StreamCloud define un protocolo de tolerancia a fallos que introduce un coste mínimo mientras que proporciona una rápida recuperación. StreamCloud ha sido implementado y evaluado mediante varias aplicaciones del mundo real tales como aplicaciones de detección de fraude o aplicaciones de análisis del tráfico de red. La evaluación ha sido realizada en un cluster con más de 300 núcleos, demostrando la alta escalabilidad y la efectividad tanto de la elasticidad, como de la tolerancia a fallos de StreamCloud.
Resumo:
This paper presents a proposal for an advanced system of debate in an environment of digital democracy which overcomes the limitations of existing systems. We have been especially careful in applying security procedures in telematic systems, for they are to offer citizens the guarantees that society demands. New functional tools have been included to ensure user authentication and to permit anonymous participation where the system is unable to disclose or even to know the identity of system users. The platform prevents participation by non-entitled persons who do not belong to the authorized group from giving their opinion. Furthermore, this proposal allows for verifying the proper function of the system, free of tampering or fraud intended to alter the conclusions or outcomes of participation. All these tools guarantee important aspects of both a social and technical nature, most importantly: freedom of expression, equality and auditability.
Resumo:
The production and industry of paprika present several problems related to quality and to production costs. One of the main difficulties is to obtain an objective and quick method for predicting quality. Quality in powder paprika involves: quantity of carotenoids and the appearance and stability of colour. The method used currently for determining quality is the measurement of absorbance at 460 nm wavelength, of an acetone extract of carotenoids, but there is no information about the appearance of the paprika or the stability of its colour with time. " Another important problem is the presence of mixtures of powdered paprika produced in the Spanish region of "La Vera", which has a peculiar way of production, with a high '' quality and price, with other products of lower quality. It is necessary to obtain methods which are able to detect the fraud.
Resumo:
We present a framework specially designed to deal with structurally complex data, where all individuals have the same structure, as is the case in many medical domains. A structurally complex individual may be composed of any type of singlevalued or multivalued attributes, including time series, for example. These attributes are structured according to domain-dependent hierarchies. Our aim is to generate reference models of population groups. These models represent the population archetype and are very useful for supporting such important tasks as diagnosis, detecting fraud, analyzing patient evolution, identifying control groups, etc.
Resumo:
In the last few years there has been a heightened interest in data treatment and analysis with the aim of discovering hidden knowledge and eliciting relationships and patterns within this data. Data mining techniques (also known as Knowledge Discovery in Databases) have been applied over a wide range of fields such as marketing, investment, fraud detection, manufacturing, telecommunications and health. In this study, well-known data mining techniques such as artificial neural networks (ANN), genetic programming (GP), forward selection linear regression (LR) and k-means clustering techniques, are proposed to the health and sports community in order to aid with resistance training prescription. Appropriate resistance training prescription is effective for developing fitness, health and for enhancing general quality of life. Resistance exercise intensity is commonly prescribed as a percent of the one repetition maximum. 1RM, dynamic muscular strength, one repetition maximum or one execution maximum, is operationally defined as the heaviest load that can be moved over a specific range of motion, one time and with correct performance. The safety of the 1RM assessment has been questioned as such an enormous effort may lead to muscular injury. Prediction equations could help to tackle the problem of predicting the 1RM from submaximal loads, in order to avoid or at least, reduce the associated risks. We built different models from data on 30 men who performed up to 5 sets to exhaustion at different percentages of the 1RM in the bench press action, until reaching their actual 1RM. Also, a comparison of different existing prediction equations is carried out. The LR model seems to outperform the ANN and GP models for the 1RM prediction in the range between 1 and 10 repetitions. At 75% of the 1RM some subjects (n = 5) could perform 13 repetitions with proper technique in the bench press action, whilst other subjects (n = 20) performed statistically significant (p < 0:05) more repetitions at 70% than at 75% of their actual 1RM in the bench press action. Rate of perceived exertion (RPE) seems not to be a good predictor for 1RM when all the sets are performed until exhaustion, as no significant differences (p < 0:05) were found in the RPE at 75%, 80% and 90% of the 1RM. Also, years of experience and weekly hours of strength training are better correlated to 1RM (p < 0:05) than body weight. O'Connor et al. 1RM prediction equation seems to arise from the data gathered and seems to be the most accurate 1RM prediction equation from those proposed in literature and used in this study. Epley's 1RM prediction equation is reproduced by means of data simulation from 1RM literature equations. Finally, future lines of research are proposed related to the problem of the 1RM prediction by means of genetic algorithms, neural networks and clustering techniques. RESUMEN En los últimos años ha habido un creciente interés en el tratamiento y análisis de datos con el propósito de descubrir relaciones, patrones y conocimiento oculto en los mismos. Las técnicas de data mining (también llamadas de \Descubrimiento de conocimiento en bases de datos\) se han aplicado consistentemente a lo gran de un gran espectro de áreas como el marketing, inversiones, detección de fraude, producción industrial, telecomunicaciones y salud. En este estudio, técnicas bien conocidas de data mining como las redes neuronales artificiales (ANN), programación genética (GP), regresión lineal con selección hacia adelante (LR) y la técnica de clustering k-means, se proponen a la comunidad del deporte y la salud con el objetivo de ayudar con la prescripción del entrenamiento de fuerza. Una apropiada prescripción de entrenamiento de fuerza es efectiva no solo para mejorar el estado de forma general, sino para mejorar la salud e incrementar la calidad de vida. La intensidad en un ejercicio de fuerza se prescribe generalmente como un porcentaje de la repetición máxima. 1RM, fuerza muscular dinámica, una repetición máxima o una ejecución máxima, se define operacionalmente como la carga máxima que puede ser movida en un rango de movimiento específico, una vez y con una técnica correcta. La seguridad de las pruebas de 1RM ha sido cuestionada debido a que el gran esfuerzo requerido para llevarlas a cabo puede derivar en serias lesiones musculares. Las ecuaciones predictivas pueden ayudar a atajar el problema de la predicción de la 1RM con cargas sub-máximas y son empleadas con el propósito de eliminar o al menos, reducir los riesgos asociados. En este estudio, se construyeron distintos modelos a partir de los datos recogidos de 30 hombres que realizaron hasta 5 series al fallo en el ejercicio press de banca a distintos porcentajes de la 1RM, hasta llegar a su 1RM real. También se muestra una comparación de algunas de las distintas ecuaciones de predicción propuestas con anterioridad. El modelo LR parece superar a los modelos ANN y GP para la predicción de la 1RM entre 1 y 10 repeticiones. Al 75% de la 1RM algunos sujetos (n = 5) pudieron realizar 13 repeticiones con una técnica apropiada en el ejercicio press de banca, mientras que otros (n = 20) realizaron significativamente (p < 0:05) más repeticiones al 70% que al 75% de su 1RM en el press de banca. El ínndice de esfuerzo percibido (RPE) parece no ser un buen predictor del 1RM cuando todas las series se realizan al fallo, puesto que no existen diferencias signifiativas (p < 0:05) en el RPE al 75%, 80% y el 90% de la 1RM. Además, los años de experiencia y las horas semanales dedicadas al entrenamiento de fuerza están más correlacionadas con la 1RM (p < 0:05) que el peso corporal. La ecuación de O'Connor et al. parece surgir de los datos recogidos y parece ser la ecuación de predicción de 1RM más precisa de aquellas propuestas en la literatura y empleadas en este estudio. La ecuación de predicción de la 1RM de Epley es reproducida mediante simulación de datos a partir de algunas ecuaciones de predicción de la 1RM propuestas con anterioridad. Finalmente, se proponen futuras líneas de investigación relacionadas con el problema de la predicción de la 1RM mediante algoritmos genéticos, redes neuronales y técnicas de clustering.
Resumo:
Resumen Ushahidi es el programa africano de mayor difusión mundial, que permite mapear información vital, desde el punto de vista social, en zonas de catástrofe o de conflicto. Originalmente concebida para reunir las múltiples denuncias de fraude en relación a las elecciones kenianas, ha sido utilizada posteriormente en todo el mundo en centenares de situaciones diversas, generalmente relacionadas con situaciones de amenazas, crisis, ayuda humanitaria, etc. Este artículo presenta el fenómeno Ushahidi y sus aplicaciones, a fin de entender su alcance y sus posibles repercusiones. También se introducen temas de gran interés para el desarrollo humano como el Crowdsourcing, la GeoWeb, la Neogeografía y la Información Geográfica Voluntaria, dada su estrecha relación con el objeto del trabajo. Abstract Ushahidi is the African program of global outreach greater, which allows to map vital information from the social point of view, in areas of disaster or conflict. Originally designed to meet the multiple allegations of fraud in relation to the Kenyan elections, has since been used worldwide in hundreds of different situations, usually related to situations of threat, crisis, humanitarian aid, etc. This paper presents the Ushahidi phenomenon and its applications, in order to understand its scope and possible implications. Topics of great interest to human development, as Crowdsourcing, the GeoWeb, the Neogeography and Volunteered Geographic Information, given its close relationship with the object of labor are also introduced.