879 resultados para Next-generation sequencing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The construction industry has incurred a considerable amount of waste as a result of poor logistics supply chain network management. Therefore, managing logistics in the construction industry is critical. An effective logistic system ensures delivery of the right products and services to the right players at the right time while minimising costs and rewarding all sectors based on value added to the supply chain. This paper reports on an on-going research study on the concept of context-aware services delivery in the construction project supply chain logistics. As part of the emerging wireless technologies, an Intelligent Wireless Web (IWW) using context-aware computing capability represents the next generation ICT application to construction-logistics management. This intelligent system has the potential of serving and improving the construction logistics through access to context-specific data, information and services. Existing mobile communication deployments in the construction industry rely on static modes of information delivery and do not take into account the worker’s changing context and dynamic project conditions. The major problems in these applications are lack of context-specificity in the distribution of information, services and other project resources, and lack of cohesion with the existing desktop based ICT infrastructure. The research works focus on identifying the context dimension such as user context, environmental context and project context, selection of technologies to capture context-parameters such wireless sensors and RFID, selection of supporting technologies such as wireless communication, Semantic Web, Web Services, agents, etc. The process of integration of Context-Aware Computing and Web-Services to facilitate the creation of intelligent collaboration environment for managing construction logistics will take into account all the necessary critical parameters such as storage, transportation, distribution, assembly, etc. within off and on-site project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The next generation consumer level interactive services require reliable and constant communication for both mobile and static users. The Digital Video Broadcasting ( DVB) group has exploited the rapidly increasing satellite technology for the provision of interactive services and launched a standard called Digital Video Broadcast through Return Channel Satellite (DYB-RCS). DVB-RCS relies on DVB-Satellite (DVB-S) for the provision of forward channel. The Digital Signal processing (DSP) implemented in the satellite channel adapter block of these standards use powerful channel coding and modulation techniques. The investigation is concentrated towards the Forward Error Correction (FEC) of the satellite channel adapter block, which will help in determining, how the technology copes with the varying channel conditions and user requirements(1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The atmospheric component of the United Kingdom’s new High-resolution Global Environmental Model (HiGEM) has been run with interactive aerosol schemes that include biomass burning and mineral dust. Dust emission, transport, and deposition are parameterized within the model using six particle size divisions, which are treated independently. The biomass is modeled in three nonindependent modes, and emissions are prescribed from an external dataset. The model is shown to produce realistic horizontal and vertical distributions of these aerosols for each season when compared with available satellite- and ground-based observations and with other models. Combined aerosol optical depths off the coast of North Africa exceed 0.5 both in boreal winter, when biomass is the main contributor, and also in summer, when the dust dominates. The model is capable of resolving smaller-scale features, such as dust storms emanating from the Bode´ le´ and Saharan regions of North Africa and the wintertime Bode´ le´ low-level jet. This is illustrated by February and July case studies, in which the diurnal cycles of model variables in relation to dust emission and transport are examined. The top-of-atmosphere annual mean radiative forcing of the dust is calculated and found to be globally quite small but locally very large, exceeding 20 W m22 over the Sahara, where inclusion of dust aerosol is shown to improve the model radiative balance. This work extends previous aerosol studies by combining complexity with increased global resolution and represents a step toward the next generation of models to investigate aerosol–climate interactions. 1. Introduction Accurate modeling of mineral dust is known to be important because of its radiative impact in both numerical weather prediction models (Milton et al. 2008; Haywood et

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New skills are needed to compete, as integrated software solutions provide a digital infrastructure for projects. This changes the practice of information management and engineering design on next generation projects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For farmers, the decision as to when to retire is probably one of the hardest that they will have to face during their working lives. The business of farming brings special circumstances which means that retirement is more often a process than a definitive action. This paper seeks firstly to clarify those special circumstances, and then, by means of flow charts, to identify the key decisions which must be faced if the retirement is to be successful. The practise of handing on the farmland and the other business assets to the next generation are regarded as separate but interrelated stages in the process of retirement, both having legal, financial and human consequences which are considered. By way of conclusion, the parameters for a successful retirement are considered, both from the standpoint of the retirer and of the successor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is motivated to investigate the often neglected payoff to investments in the health of girls and women in terms of next generation outcomes. This paper investigates the intergenerational persistence of health across time and region as well as across the distribution of maternal health. It uses comparable microdata on as many as 2.24 million children born of about 0.6 million mothers in 38 developing countries in the 31 year period, 1970–2000. Mother's health is indicated by her height, BMI and anemia status. Child health is indicated by mortality risk and anthropometric failure. We find a positive relationship between maternal and child health across indicators and highlight non-linearities in these relationships. The results suggest that both contemporary and childhood health of the mother matter and that the benefits to the next generation are likely to be persistent. Averaging across the sample, persistence shows a considerable decline over time. Disaggregation shows that the decline is only significant in Latin America. Persistence has remained largely constant in Asia and has risen in Africa. The paper provides the first cross-country estimates of the intergenerational persistence in health and the first estimates of trends.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research explores the relationship between inheritance, access to resources and the intergenerational transmission of poverty among the Serer ethnic group in rural and urban environments in Senegal. In many Sub-Saharan African countries, customary law excludes women from owning and inheriting assets, such as land and property. Yet, assets controlled by women often result in increased investments in the next generation's health, nutrition and schooling and reduce the intergenerational transmission of poverty. Qualitative research with 60 participants in Senegal reveals the important role that land, housing and financial assets may play in building resilience to household shocks and interrupting the intergenerational transmission of poverty. However, the protection afforded by these assets was often dependent on other factors, including human, social and environmental capital. The death of a spouse or parent had major emotional and material impacts on many Serer families. The inheritance and control of assets and resources was strongly differentiated among family members along lines of gender, age and generation. Younger widows and their children were particularly vulnerable to chronic poverty. Although inheritance disputes were rare, the research suggests they are more likely between co-wives in polygamous unions and their children, particularly in urban areas. In addition to experiencing economic and health-related shocks, many interviewees were exposed to a range of climate-related risks and environmental pressures which increased their vulnerability. Family members coped with these shocks and risks by diversifying livelihoods, migrating to urban areas and other regions for work, participating in women's co-operatives and associations and developing supportive social networks with extended family and community members. Policies and practices that may help to alleviate poverty, safeguard women's and young people's inheritance and build resilience to financial, health-related and environmental shocks and risks include: - Social protection measures targeted towards poor widows and orphaned children, such as social and cash transfers to pay for basic needs including food, healthcare and children's schooling. - Micro-finance initiatives and credit and savings schemes, alongside training and capacity-building targeted to women and young people to develop income-generation activities and skills. - Free legal advice, support and advocacy for women and young people to pursue inheritance claims through the legal system. - Raising awareness about women's and children's legal rights and working with government and community and religious leaders to tackle discriminatory inheritance practices and contradictions caused by legal pluralism. - Increasing women's control of land and access to inputs, enhancing their business, organisational, and leadership skills and promoting civic participation in local, regional and national decision-making processes. - Improving access to basic services in rural areas, particularly healthcare, building the quality of education and promoting girls' access to education - Enhancing agricultural production and providing more employment opportunities, apprenticeships and vocational training for young people, particularly in rural areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impending threat of global climate change and its regional manifestations is among the most important and urgent problems facing humanity. Society needs accurate and reliable estimates of changes in the probability of regional weather variations to develop science-based adaptation and mitigation strategies. Recent advances in weather prediction and in our understanding and ability to model the climate system suggest that it is both necessary and possible to revolutionize climate prediction to meet these societal needs. However, the scientific workforce and the computational capability required to bring about such a revolution is not available in any single nation. Motivated by the success of internationally funded infrastructure in other areas of science, this paper argues that, because of the complexity of the climate system, and because the regional manifestations of climate change are mainly through changes in the statistics of regional weather variations, the scientific and computational requirements to predict its behavior reliably are so enormous that the nations of the world should create a small number of multinational high-performance computing facilities dedicated to the grand challenges of developing the capabilities to predict climate variability and change on both global and regional scales over the coming decades. Such facilities will play a key role in the development of next-generation climate models, build global capacity in climate research, nurture a highly trained workforce, and engage the global user community, policy-makers, and stakeholders. We recommend the creation of a small number of multinational facilities with computer capability at each facility of about 20 peta-flops in the near term, about 200 petaflops within five years, and 1 exaflop by the end of the next decade. Each facility should have sufficient scientific workforce to develop and maintain the software and data analysis infrastructure. Such facilities will enable questions of what resolution, both horizontal and vertical, in atmospheric and ocean models, is necessary for more confident predictions at the regional and local level. Current limitations in computing power have placed severe limitations on such an investigation, which is now badly needed. These facilities will also provide the world's scientists with the computational laboratories for fundamental research on weather–climate interactions using 1-km resolution models and on atmospheric, terrestrial, cryospheric, and oceanic processes at even finer scales. Each facility should have enabling infrastructure including hardware, software, and data analysis support, and scientific capacity to interact with the national centers and other visitors. This will accelerate our understanding of how the climate system works and how to model it. It will ultimately enable the climate community to provide society with climate predictions, which are based on our best knowledge of science and the most advanced technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Children are expensive to raise. Ensuring that they are raised such that they are able to lead a minimally decent life costs time and money, and lots of both. Who is responsible for bearing the costs of the things that children are undoubtedly owed? This is a question that has received comparatively little scrutiny from political philosophers, despite children being such a drain on public and private finances alike. To the extent that there is a debate, two main views can be identified. The Parents Pay view says that parents, responsible for the existence of the costs, must foot the bill. The Society Pays view says that a next generation is a benefit to all, and so to allow parents to foot the bill alone is the worst kind of free-riding. In this paper, I introduce a third potentially liable party currently missing from the debate: children themselves. On my backward-looking view, we are entitled to ask people to contribute to the raising of children on the basis that they have benefited from being raised themselves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radar refractivity retrievals can capture near-surface humidity changes, but noisy phase changes of the ground clutter returns limit the accuracy for both klystron- and magnetron-based systems. Observations with a C-band (5.6 cm) magnetron weather radar indicate that the correction for phase changes introduced by local oscillator frequency changes leads to refractivity errors no larger than 0.25 N units: equivalent to a relative humidity change of only 0.25% at 20°C. Requested stable local oscillator (STALO) frequency changes were accurate to 0.002 ppm based on laboratory measurements. More serious are the random phase change errors introduced when targets are not at the range-gate center and there are changes in the transmitter frequency (ΔfTx) or the refractivity (ΔN). Observations at C band with a 2-μs pulse show an additional 66° of phase change noise for a ΔfTx of 190 kHz (34 ppm); this allows the effect due to ΔN to be predicted. Even at S band with klystron transmitters, significant phase change noise should occur when a large ΔN develops relative to the reference period [e.g., ~55° when ΔN = 60 for the Next Generation Weather Radar (NEXRAD) radars]. At shorter wavelengths (e.g., C and X band) and with magnetron transmitters in particular, refractivity retrievals relative to an earlier reference period are even more difficult, and operational retrievals may be restricted to changes over shorter (e.g., hourly) periods of time. Target location errors can be reduced by using a shorter pulse or identified by a new technique making alternate measurements at two closely spaced frequencies, which could even be achieved with a dual–pulse repetition frequency (PRF) operation of a magnetron transmitter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the prospect of exascale computing, computational methods requiring only local data become especially attractive. Consequently, the typical domain decomposition of atmospheric models means horizontally-explicit vertically-implicit (HEVI) time-stepping schemes warrant further attention. In this analysis, Runge-Kutta implicit-explicit schemes from the literature are analysed for their stability and accuracy using a von Neumann stability analysis of two linear systems. Attention is paid to the numerical phase to indicate the behaviour of phase and group velocities. Where the analysis is tractable, analytically derived expressions are considered. For more complicated cases, amplification factors have been numerically generated and the associated amplitudes and phase diagnosed. Analysis of a system describing acoustic waves has necessitated attributing the three resultant eigenvalues to the three physical modes of the system. To do so, a series of algorithms has been devised to track the eigenvalues across the frequency space. The result enables analysis of whether the schemes exactly preserve the non-divergent mode; and whether there is evidence of spurious reversal in the direction of group velocities or asymmetry in the damping for the pair of acoustic modes. Frequency ranges that span next-generation high-resolution weather models to coarse-resolution climate models are considered; and a comparison is made of errors accumulated from multiple stability-constrained shorter time-steps from the HEVI scheme with a single integration from a fully implicit scheme over the same time interval. Two schemes, “Trap2(2,3,2)” and “UJ3(1,3,2)”, both already used in atmospheric models, are identified as offering consistently good stability and representation of phase across all the analyses. Furthermore, according to a simple measure of computational cost, “Trap2(2,3,2)” is the least expensive.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Performance modelling is a useful tool in the lifeycle of high performance scientific software, such as weather and climate models, especially as a means of ensuring efficient use of available computing resources. In particular, sufficiently accurate performance prediction could reduce the effort and experimental computer time required when porting and optimising a climate model to a new machine. In this paper, traditional techniques are used to predict the computation time of a simple shallow water model which is illustrative of the computation (and communication) involved in climate models. These models are compared with real execution data gathered on AMD Opteron-based systems, including several phases of the U.K. academic community HPC resource, HECToR. Some success is had in relating source code to achieved performance for the K10 series of Opterons, but the method is found to be inadequate for the next-generation Interlagos processor. The experience leads to the investigation of a data-driven application benchmarking approach to performance modelling. Results for an early version of the approach are presented using the shallow model as an example.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Massive economic and population growth, and urbanization are expected to lead to a tripling of anthropogenic emissions in southern West Africa (SWA) between 2000 and 2030. However, the impacts of this on human health, ecosystems, food security, and the regional climate are largely unknown. An integrated assessment is challenging due to (a) a superposition of regional effects with global climate change, (b) a strong dependence on the variable West African monsoon, (c) incomplete scientific understanding of interactions between emissions, clouds, radiation, precipitation, and regional circulations, and (d) a lack of observations. This article provides an overview of the DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project. DACCIWA will conduct extensive fieldwork in SWA to collect high-quality observations, spanning the entire process chain from surface-based natural and anthropogenic emissions to impacts on health, ecosystems, and climate. Combining the resulting benchmark dataset with a wide range of modeling activities will allow (a) assessment of relevant physical, chemical, and biological processes, (b) improvement of the monitoring of climate and atmospheric composition from space, and (c) development of the next generation of weather and climate models capable of representing coupled cloud-aerosol interactions. The latter will ultimately contribute to reduce uncertainties in climate predictions. DACCIWA collaborates closely with operational centers, international programs, policy-makers, and users to actively guide sustainable future planning for West Africa. It is hoped that some of DACCIWA’s scientific findings and technical developments will be applicable to other monsoon regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dynamic global vegetation models (DGVMs) typically rely on plant functional types (PFTs), which are assigned distinct environmental tolerances and replace one another progressively along environmental gradients. Fixed values of traits are assigned to each PFT; modelled trait variation along gradients is thus driven by PFT replacement. But empirical studies have revealed "universal" scaling relationships (quantitative trait variations with climate that are similar within and between species, PFTs and communities); and continuous, adaptive trait variation has been proposed to replace PFTs as the basis for next-generation DGVMs. Here we analyse quantitative leaf-trait variation on long temperature and moisture gradients in China with a view to understanding the relative importance of PFT replacement vs. continuous adaptive variation within PFTs. Leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC) and nitrogen content of dry matter were measured on all species at 80 sites ranging from temperate to tropical climates and from dense forests to deserts. Chlorophyll fluorescence traits and carbon, phosphorus and potassium contents were measured at 47 sites. Generalized linear models were used to relate log-transformed trait values to growing-season temperature and moisture indices, with or without PFT identity as a predictor, and to test for differences in trait responses among PFTs. Continuous trait variation was found to be ubiquitous. Responses to moisture availability were generally similar within and between PFTs, but biophysical traits (LA, SLA and LDMC) of forbs and grasses responded differently from woody plants. SLA and LDMC responses to temperature were dominated by the prevalence of evergreen PFTs with thick, dense leaves at the warm end of the gradient. Nutrient (N, P and K) responses to climate gradients were generally similar within all PFTs. Area-based nutrients generally declined with moisture; Narea and Karea declined with temperature, but Parea increased with temperature. Although the adaptive nature of many of these trait-climate relationships is understood qualitatively, a key challenge for modelling is to predict them quantitatively. Models must take into account that community-level responses to climatic gradients can be influenced by shifts in PFT composition, such as the replacement of deciduous by evergreen trees, which may run either parallel or counter to trait variation within PFTs. The importance of PFT shifts varies among traits, being important for biophysical traits but less so for physiological and chemical traits. Finally, models should take account of the diversity of trait values that is found in all sites and PFTs, representing the "pool" of variation that is locally available for the natural adaptation of ecosystem function to environmental change.