872 resultados para Neural networks (Computer science)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Loss networks have long been used to model various types of telecommunication network, including circuit-switched networks. Such networks often use admission controls, such as trunk reservation, to optimize revenue or stabilize the behaviour of the network. Unfortunately, an exact analysis of such networks is not usually possible, and reduced-load approximations such as the Erlang Fixed Point (EFP) approximation have been widely used. The performance of these approximations is typically very good for networks without controls, under several regimes. There is evidence, however, that in networks with controls, these approximations will in general perform less well. We propose an extension to the EFP approximation that gives marked improvement for a simple ring-shaped network with trunk reservation. It is based on the idea of considering pairs of links together, thus making greater allowance for dependencies between neighbouring links than does the EFP approximation, which only considers links in isolation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinatorial optimization problems share an interesting property with spin glass systems in that their state spaces can exhibit ultrametric structure. We use sampling methods to analyse the error surfaces of feedforward multi-layer perceptron neural networks learning encoder problems. The third order statistics of these points of attraction are examined and found to be arranged in a highly ultrametric way. This is a unique result for a finite, continuous parameter space. The implications of this result are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long short-term memory (LSTM) is not the only neural network which learns a context sensitive language. Second-order sequential cascaded networks (SCNs) are able to induce means from a finite fragment of a context-sensitive language for processing strings outside the training set. The dynamical behavior of the SCN is qualitatively distinct from that observed in LSTM networks. Differences in performance and dynamics are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measuring perceptions of customers can be a major problem for marketers of tourism and travel services. Much of the problem is to determine which attributes carry most weight in the purchasing decision. Older travellers weigh many travel features before making their travel decisions. This paper presents a descriptive analysis of neural network methodology and provides a research technique that assesses the weighting of different attributes and uses an unsupervised neural network model to describe a consumer-product relationship. The development of this rich class of models was inspired by the neural architecture of the human brain. These models mathematically emulate the neurophysical structure and decision making of the human brain, and, from a statistical perspective, are closely related to generalised linear models. Artificial neural networks or neural networks are, however, nonlinear and do not require the same restrictive assumptions about the relationship between the independent variables and dependent variables. Using neural networks is one way to determine what trade-offs older travellers make as they decide their travel plans. The sample of this study is from a syndicated data source of 200 valid cases from Western Australia. From senior groups, active learner, relaxed family body, careful participants and elementary vacation were identified and discussed. (C) 2003 Published by Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Admission controls, such as trunk reservation, are often used in loss networks to optimise their performance. Since the numerical evaluation of performance measures is complex, much attention has been given to finding approximation methods. The Erlang Fixed-Point (EFP) approximation, which is based on an independent blocking assumption, has been used for networks both with and without controls. Several more elaborate approximation methods which account for dependencies in blocking behaviour have been developed for the uncontrolled setting. This paper is an exploratory investigation of extensions and synthesis of these methods to systems with controls, in particular, trunk reservation. In order to isolate the dependency factor, we restrict our attention to a highly linear network. We will compare the performance of the resulting approximations against the benchmark of the EFP approximation extended to the trunk reservation setting. By doing this, we seek to gain insight into the critical factors in constructing an effective approximation. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent work by Siegelmann has shown that the computational power of recurrent neural networks matches that of Turing Machines. One important implication is that complex language classes (infinite languages with embedded clauses) can be represented in neural networks. Proofs are based on a fractal encoding of states to simulate the memory and operations of stacks. In the present work, it is shown that similar stack-like dynamics can be learned in recurrent neural networks from simple sequence prediction tasks. Two main types of network solutions are found and described qualitatively as dynamical systems: damped oscillation and entangled spiraling around fixed points. The potential and limitations of each solution type are established in terms of generalization on two different context-free languages. Both solution types constitute novel stack implementations - generally in line with Siegelmann's theoretical work - which supply insights into how embedded structures of languages can be handled in analog hardware.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Handoff processes, the events where mobile nodes select the best access point available to transfer data, have been well studied in cellular and WiFi networks. However, wireless sensor networks (WSN) pose a new set of challenges due to their simple low-power radio transceivers and constrained resources. This paper proposes smart-HOP, a handoff mechanism tailored for mobile WSN applications. This work provides two important contributions. First, it demonstrates the intrinsic relationship between handoffs and the transitional region. The evaluation shows that handoffs perform the best when operating in the transitional region, as opposed to operating in the more reliable connected region. Second, the results reveal that a proper fine tuning of the parameters, in the transitional region, can reduce handoff delays by two orders of magnitude, from seconds to tens of milliseconds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant research efforts are being devoted to Body Area Networks (BAN) due to their potential for revolutionizing healthcare practices. Energy-efficiency and communication reliability are critically important for these networks. In an experimental study with three different mote platforms, we show that changes in human body shadowing as well as those in the relative distance and orientation of nodes caused by the common human body movements can result in significant fluctuations in the received signal strength within a BAN. Furthermore, regular movements, such as walking, typically manifest in approximately periodic variations in signal strength. We present an algorithm that predicts the signal strength peaks and evaluate it on real-world data. We present the design of an opportunistic MAC protocol, named BANMAC, that takes advantage of the periodic fluctuations of the signal strength to achieve high reliability even with low transmission power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radio Link Quality Estimation (LQE) is a fundamental building block for Wireless Sensor Networks, namely for a reliable deployment, resource management and routing. Existing LQEs (e.g. PRR, ETX, Fourbit, and LQI ) are based on a single link property, thus leading to inaccurate estimation. In this paper, we propose F-LQE, that estimates link quality on the basis of four link quality properties: packet delivery, asymmetry, stability, and channel quality. Each of these properties is defined in linguistic terms, the natural language of Fuzzy Logic. The overall quality of the link is specified as a fuzzy rule whose evaluation returns the membership of the link in the fuzzy subset of good links. Values of the membership function are smoothed using EWMA filter to improve stability. An extensive experimental analysis shows that F-LQE outperforms existing estimators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational Intelligence (CI) includes four main areas: Evolutionary Computation (genetic algorithms and genetic programming), Swarm Intelligence, Fuzzy Systems and Neural Networks. This article shows how CI techniques overpass the strict limits of Artificial Intelligence field and can help solving real problems from distinct engineering areas: Mechanical, Computer Science and Electrical Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research addresses the problem of creating interactive experiences to encourage people to explore spaces. Besides the obvious spaces to visit, such as museums or art galleries, spaces that people visit can be, for example, a supermarket or a restaurant. As technology evolves, people become more demanding in the way they use it and expect better forms of interaction with the space that surrounds them. Interaction with the space allows information to be transmitted to the visitors in a friendly way, leading visitors to explore it and gain knowledge. Systems to provide better experiences while exploring spaces demand hardware and software that is not in the reach of every space owner either because of the cost or inconvenience of the installation, that can damage artefacts or the space environment. We propose a system adaptable to the spaces, that uses a video camera network and a wi-fi network present at the space (or that can be installed) to provide means to support interactive experiences using the visitor’s mobile device. The system is composed of an infrastructure (called vuSpot), a language grammar used to describe interactions at a space (called XploreDescription), a visual tool used to design interactive experiences (called XploreBuilder) and a tool used to create interactive experiences (called urSpace). By using XploreBuilder, a tool built of top of vuSpot, a user with little or no experience in programming can define a space and design interactive experiences. This tool generates a description of the space and of the interactions at that space (that complies with the XploreDescription grammar). These descriptions can be given to urSpace, another tool built of top of vuSpot, that creates the interactive experience application. With this system we explore new forms of interaction and use mobile devices and pico projectors to deliver additional information to the users leading to the creation of interactive experiences. The several components are presented as well as the results of the respective user tests, which were positive. The design and implementation becomes cheaper, faster, more flexible and, since it does not depend on the knowledge of a programming language, accessible for the general public.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schizophrenia stands for a long-lasting state of mental uncertainty that may bring to an end the relation among behavior, thought, and emotion; that is, it may lead to unreliable perception, not suitable actions and feelings, and a sense of mental fragmentation. Indeed, its diagnosis is done over a large period of time; continuos signs of the disturbance persist for at least 6 (six) months. Once detected, the psychiatrist diagnosis is made through the clinical interview and a series of psychic tests, addressed mainly to avoid the diagnosis of other mental states or diseases. Undeniably, the main problem with identifying schizophrenia is the difficulty to distinguish its symptoms from those associated to different untidiness or roles. Therefore, this work will focus on the development of a diagnostic support system, in terms of its knowledge representation and reasoning procedures, based on a blended of Logic Programming and Artificial Neural Networks approaches to computing, taking advantage of a novel approach to knowledge representation and reasoning, which aims to solve the problems associated in the handling (i.e., to stand for and reason) of defective information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thrombotic disorders have severe consequences for the patients and for the society in general, being one of the main causes of death. These facts reveal that it is extremely important to be preventive; being aware of how probable is to have that kind of syndrome. Indeed, this work will focus on the development of a decision support system that will cater for an individual risk evaluation with respect to the surge of thrombotic complaints. The Knowledge Representation and Reasoning procedures used will be based on an extension to the Logic Programming language, allowing the handling of incomplete and/or default data. The computational framework in place will be centered on Artificial Neural Networks.