988 resultados para NORTH PACIFIC
Resumo:
Foraminiferal abundance, 14C ventilation ages, and stable isotope ratios in cores from high deposition rate locations in the western subtropical North Atlantic are used to infer changes in ocean and climate during the Younger Dryas (YD) and Last Glacial Maximum (LGM). The d18O of the surface dwelling planktonic foram Globigerinoides ruber records the present-day decrease in surface temperature (SST) of ~4°C from Gulf Stream waters to the northeastern Bermuda Rise. If during the LGM the modern d18O/salinity relationship was maintained, this SST contrast was reduced to 2°C. With LGM to interglacial d18O changes of at least 2.2 per mil, SSTs in the western subtropical gyre may have been as much as 5°C colder. Above ~2.3 km, glacial d13C was higher than today, consistent with nutrient-depleted (younger) bottom waters, as identified previously. Below that, d13C decreased continually to -0.5 per mil, about equal to the lowest LGM d13C in the North Pacific Ocean. Seven pairs of benthic and planktonic foraminiferal 14C dates from cores >2.5 km deep differ by 1100 ± 340 years, with a maximum apparent ventilation age of ~1500 years at 4250 m and at ~4700 m. Apparent ventilation ages are presently unavailable for the LGM < 2.5 km because of problems with reworking on the continental slope when sea level was low. Because LGM d13C is about the same in the deep North Atlantic and the deep North Pacific, and because the oldest apparent ventilation ages in the LGM North Atlantic are the same as the North Pacific today, it is possible that the same water mass, probably of southern origin, flowed deep within each basin during the LGM. Very early in the YD, dated here at 11.25 ± 0.25 (n = 10) conventional 14C kyr BP (equal to 12.9 calendar kyr BP), apparent ventilation ages <2.3 km water depth were about the same as North Atlantic Deep Water today. Below ~2.3 km, four YD pairs average 1030 ± 400 years. The oldest apparent ventilation age for the YD is 1600 years at 4250 m. This strong contrast in ventilation, which indicates a front between water masses of very different origin, is similar to glacial profiles of nutrient-like proxies. This suggests that the LGM and YD modes of ocean circulation were the same.
Resumo:
We measured major and trace element concentrations in the operationally defined, chemically extracted, residual aluminosilicate component of sediment from Ocean Drilling Program Sites 1215 and 1256 in the central and eastern equatorial Pacific Ocean and found that this residual component contains volcanogenic and authigenic aluminosilicates in addition to inferred eolian material. While the residual component younger than 20 Ma from the central Pacific (ODP Site 1215) is similar compositionally to upper continental crust and suggests an increase in the delivery of Asian dust material since 20 Ma, the residual in sediment older than 20 Ma indicates significant amounts of volcanogenic and authigenic materials. Volcanogenic debris comprises as much as ~ 40% of the residual between 23-40 Ma, which coincides with the mid-Tertiary "ignimbrite flare-up" that occurred in much of western North America. The residual component extracted from the 50 Ma biogenic sediment reflects authigenic signatures (seawater-like negative cerium anomalies and elevated Fe/Si ratios). The previously interpreted increase in an andesitic detrital source in North Pacific locations may instead be authigenic material, presenting significant challenges for many paleoclimate proxies. Additionally, in the eastern Pacific (ODP Site 1256), the residual component contains ~70% of volcanogenic material, most likely originating from Central America, and also includes refractory barite. The ability to separately identify eolian, volcanogenic, and authigenic materials in the aluminosilicate component of pelagic sediment allows resolution, respectively, of the climatic, geologic, and chemical processes contributing to the paleoceanographic archive in this critical oceanic region.
Resumo:
Cainozoic deep-sea ostracod assemblages from the summits of Mid-Pacific guyots point to high levels of endemism possibly as a result of their bathymetric separation from the surrounding sea floor. However, the interpretation of these fossil assemblages is hampered by the paucity of comparative material from surrounding non-guyot sites. Fifteen ostracod assemblages from DSDP Site 463 (Late Cretaceous-Pleistocene) were studied to compare with those from nearby guyots. Three distinct faunal assemblages are recognised at Site 463: Assemblage A (Maastrichtian-Eocene), Assemblage B (Oligocene-Upper Miocene) and Assemblage C (Upper Miocene-Pleistocene) although the palaeoenvironmental significance of these units is unclear. Sixty-two ostracod species are identified, the thirteen most abundant are discussed in the taxonomic section, five of which are described as new. Between 30 and 100% of the species encountered in each sample are considered as endemic to Site 463, while some of the remaining species were previously thought to be endemic to individual guyots. Similarly high levels of endemism on nearby guyots probably reflect an incomplete knowledge of deep-sea ostracod faunas rather than the establishment of geographically or bathymetrically restricted populations. The presence of globally pandemic and geographically widespread taxa on sites such as the Mid-Pacific Mountains, surrounded by abyssal depths which lie below the CCD, indicates that some faunal exchange or migration of ostracods does take place. This must be achieved within the intermediate waters and probably occurs passively.
Resumo:
The late Eocene through earliest Oligocene (40-32 Ma) spans a major transition from greenhouse to icehouse climate, with net cooling and expansion of Antarctic glaciation shortly after the Eocene/Oligocene (E/O) boundary. We investigated the response of the oceanic biosphere to these changes by reconstructing barite and CaCO3 accumulation rates in sediments from the equatorial and North Pacific Ocean. These data allow us to evaluate temporal and geographical variability in export production and CaCO3 preservation. Barite accumulation rates were on average higher in the warmer late Eocene than in the colder early Oligocene, but cool periods within the Eocene were characterized by peaks in both barite and CaCO3 accumulation in the equatorial region. We infer that climatic changes not only affected deep ocean ventilation and chemistry, but also had profound effects on surface water characteristics influencing export productivity. The ratio of CaCO3 to barite accumulation rates, representing the ratio of particulate inorganic C accumulation to Corg export, increased dramatically at the E/O boundary. This suggests that long-term drawdown of atmospheric CO2 due to organic carbon deposition to the seafloor decreased, potentially offsetting decreasing pCO2 levels and associated cooling. The relatively larger increase in CaCO3 accumulation compared to export production at the E/O suggests that the permanent deepening of the calcite compensation depth (CCD) at that time stems primarily from changes in deep water chemistry and not from increased carbonate production.
Resumo:
I have compiled CaCO3 mass accumulation rates (MARs) for the period 0-25 Ma for 144 Deep Sea Drilling Project and Ocean Drilling Program drill sites in the Pacific in order to investigate the history of CaCO3 burial in the world's largest ocean basin. This is the first synthesis of data since the beginning of the Ocean Drilling Program. Sedimentation rates, CaCO3 contents, and bulk density were estimated for 0.5 Myr time intervals from 0 to 14 Ma and for 1 Myr time intervals from 14 to 25 Ma using mostly data from Initial Reports volumes. There is surprisingly little coherence between CaCO3 MAR time series from different Pacific regions, although regional patterns exist. A transition from high to low CaCO3 MAR from 23-20 Ma is the only event common to the entire Pacific Ocean. This event is found worldwide. The most likely cause of lowered pelagic carbonate burial is a rising sea-level trend in the early Miocene. The central and eastern equatorial Pacific is the only region with adequate drill site coverage to study carbonate compensation depth (CCD) changes in detail for the entire Neogene. The latitude-dependent decrease in CaCO3 production away from the equator is an important defining factor of the regional CCD, which shallows away from the equatorial region. Examination of latitudinal transects across the equatorial region is a useful way to separate the effects of changes in carbonate production ('productivity') from changes in bottom water chemistry ('dissolution') upon carbonate burial.
Resumo:
We present the first high-resolution organic carbon mass accumulation rate (MAR) data set for the Eocene equatorial Pacific upwelling region, from Sites 1218 and 1219 of the Ocean Drilling Program. A maximum Corg MAR anomaly appears at 41 Ma and corresponds to a high carbonate accumulation event (CAE). Independent evidence suggests that this event (CAE-3) was a time of rapid cooling. Throughout the Eocene, organic carbon burial fluxes were an order of magnitude lower than fluxes recorded for the Holocene. In contrast, the expected organic carbon flux, calculated from the biogenic barium concentrations for these sites, is roughly equal to modern. A sedimentation anomaly appears at 41 Ma, when both the measured and the expected organic carbon MAR increases by a factor of two-three relative to the background Eocene fluxes. The rain of estimated Corg and barium from the euphotic zone to the sediments increased by factors of three and six, respectively. We suggest that the discrepancy between the expected and measured Corg in the sediments is a direct consequence of the increased metabolic rates of all organisms throughout the Eocene oceans and sediments. This hypothesis is supported by recent work in ecology and biochemical kinetics that recognizes the fundamental basis of ecology as following from the laws of thermodynamics. This dependence is now elucidated as the Universal Temperature Dependence (UTD) "law" of metabolism and can be applied to all organisms over their biologically relevant temperature range. The general pattern of organic carbon and barium deposition throughout the Eocene is consistent with the UTD theory. In particular, the anomaly at 41 Ma (CAE-3) is associated with rapid cooling, an event that triggered slower metabolic rates for all organisms, slower recycling of organic carbon in the water and sediment column, and, consequently, higher deposition of organic carbon in the sediments. This "metabolism-based" scenario is consistent with the sedimentation patterns we observe for both Sites 1218 and 1219.
Resumo:
Benthic foraminifers were studied in upper Eocene to Recent core-catcher samples from DSDP Sites 573, 574, and 575. The sites are on a north-south transect from the equator to about 05°N at about 133°W, water depth 4300 to 4600 m. At Site 574 additional samples were used to study the Eocene/Oligocene boundary in detail. About 200 specimens were counted per sample. The fauna is highly diverse (about 50 to 70 species per sample) and is of low dominance. The diversity is not related to age or sub-bottom depth. Many species are cosmopolitan and probably have wide environmental tolerances. Fluctuations in frequency of some taxa (e.g., Nuttallides umbonifera, Epistominella exigua, and Uvigerina spp.) cannot be correlated from one site to another. Several common species (e.g. Oridorsalis umbonatus and Globocassidulina subglobosa) range from late Eocene to Recent. First and last appearances are generally difficult to define precisely because many species are rare. For some species these datums differ from one site to another, but several datum levels are within 1 m.y. at all sites. First and last appearances are most numerous in two intervals, the late Eocene to early Oligocene (about 32 to 37 Ma) and the early to middle Miocene (about 13 to 18.5 Ma). Isotopic events occur within each of these periods of benthic faunal change, but the isotopic events have a shorter duration and start after the initiation of the changes in the fauna. Changes in deep-sea benthic faunal composition are not directly related to short-term oceanographic changes as expressed in isotopic records.
Resumo:
Maximum entropy spectral analyses and a fitting test to find the best suitable curve for the modified time series based on the non-linear least squares method for Td (diatom temperature) values were performed for the Quaternary portion of the DSDP Sites 579 and 580 in the western North Pacific. The sampling interval averages 13.7 kyr in the Brunhes Chron (0-780 ka) and 16.5 kyr in the later portion of the Matuyama Chron (780-1800 ka) at Site 580, but increases to 17.3 kyr and 23.2 kyr, respectively, at Site 579. Among dominant cycles during the Brunhes Chron, there are 411.5 kyr and 126.0 kyr at Site 579, and 467.0 kyr and 136.7 kyr at Site 580 correspond to 413 kyr and 95 to 124 kyr of the orbital eccentricity. Minor cycles of 41.2 kyr at Site 579 and 41.7 kyr at Site 580 are near to 41 kyr of the obliquity (tilt). During the Matuyama Chron at Site 580, cycles of 49.7 kyr and 43.6 kyr are dominant. The surface-water temperature estimated from diatoms at the western North Pacific DSDP Sites 579 and 580 shows correlation with the fundamental Earth's orbital parameters during Quaternary time.
Resumo:
Oxygen-18 records of benthic foraminifera from the Atlantic Ocean are significantly different from those of the Pacific and Indian Oceans indicating that the Glacial North Atlantic Deep Water was about 1.3°C cooler than today because different deep water sources appeared in the North Atlantic Ocean during glacial times. The present study seeks to interprete carbon-13 records of planktonic and benthic foraminifera as a tracer of the cycle of the CO2 dissolved in surface and deep water of the ocean during the last climatic cycle. Carbon-13 records of planktonic foraminifera indicate that the delta13C of atmospheric CO2 and total CO2 dissolved in surface water did not vary noticeably (-0.2 +/- 0.3 per mil) during glacial times. Carbon-13 records of benthic foraminifera indicate that the eastern North Atlantic Ocean was an area of deep water formation dying isotopic stage 2, but not during most of stage 3. Moreover, large delta13C differences in the NADW between 20°N and 50°N show that the residence time of the glacial NADW was about 4 times that of today.