951 resultados para NEGATIVELY-CHARGED PHOSPHOLIPIDS
Resumo:
A multiple factor parametrization is described to permit the efficient calculation of collision efficiency (E) between electrically charged aerosol particles and neutral cloud droplets in numerical models of cloud and climate. The four-parameter representation summarizes the results obtained from a detailed microphysical model of E, which accounts for the different forces acting on the aerosol in the path of falling cloud droplets. The parametrization's range of validity is for aerosol particle radii of 0.4 to 10 mu m, aerosol particle densities of I to 2.0 g cm(-3), aerosol particle charges from neutral to 100 elementary charges and drop radii from 18.55 to 142 mu m. The parametrization yields values of E well within an order of magnitude of the detailed model's values, from a dataset of 3978 E values. Of these values 95% have modelled to parametrized ratios between 0.5 and 1.5 for aerosol particle sizes ranging between 0.4 and 2.0 mu m, and about 96% in the second size range. This parametrization speeds up the calculation of E by a factor of similar to 10(3) compared with the original microphysical model, permitting the inclusion of electric charge effects in numerical cloud and climate models.
Resumo:
Platelet endothelial cell adhesion molecule-1 (PECAM-1) inhibits platelet response to collagen and may also inhibit two other major platelet agonists ADP and thrombin although this has been less well explored. We hypothesized that the combined effect of inhibiting these three platelet activating pathways may act to significantly inhibit thrombus formation. We demonstrate a negative relationship between PECAM-1 surface expression and platelet response to cross-linked collagen related peptide (CRP-XL) and ADP, and an inhibitory effect of PECAM-1 clustering on platelet response to CRP-XL, ADP and thrombin. This combined inhibition of multiple signaling pathways results in a marked reduction in thrombus formation. (C) 2009 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved.
Resumo:
Background: There is little information about the relation between the fatty acid composition of human immune cells and the function of those cells over the habitual range of fatty acid intakes. Objective: The objective of the study was to determine the relation between the fatty acid composition of human peripheral blood mononuclear cell (PBMC) phospholipids and the functions of human immune cells. Design: One hundred fifty healthy adult subjects provided a fasting blood sample. The phagocytic and oxidative burst activities of monocytes and neutrophils were measured in whole blood. PBMCs were isolated and used to measure lymphocyte proliferation in response to the T cell mitogen concanavalin A and the production of cytokines in response to concanavalin A or bacterial lipopolysaccharide. The fatty acid composition of plasma and PBMC phospholipids was determined. Results: Wide variations in fatty acid composition of PBMC phospholipids and immune cell functions were identified among the subjects. The proportions of total Polyunsaturated fatty acids (PUFAs), of total n-6 and n-3 PUFAs, and of several individual PUFAs in PBMC phospholipids were positively correlated with phagocytosis by neutrophils and monocytes, neutrophil oxidative burst, lymphocyte proliferation, and interferon gamma production. The ratios of saturated fatty acids to PUFAs and of n-6 to n-3 PUFAs were negatively correlated with these same immune functions. The relation of PBMC fatty acid composition to monocyte oxidative burst was the reverse of its relation to monocyte phagocytosis and neutrophil oxidative burst. Conclusion: Variations in the fatty acid composition of PBMC phospholipids account for some of the variability in immune cell functions among healthy adults.
Resumo:
This study has investigated the influence of dietary fatty acid composition on mammary tumour incidence in N-ethyl-N-nitrosourea (ENU)-treated rats and has compared the susceptibility to dietary fatty acid modification of the membrane phospholipids phosphatidyliuositol (PI) and phosphatidylethanolamine (PE) from normal and tumour tissue of rat mammary gland. The incidence of mammary tumours was significantly lower in fish oil- (29%), compared with olive oil- (75%; P < 0.04) but not maize oil- (63%; P < 0.1) fed animals. No differences in PI fatty acid composition were found in normal or tumour tissue between rats fed on maize oil, olive oil or fish oil in diets from weaning. When normal and tumour tissue PI fatty acids were compared, significantly higher amounts of stearic acid (18:O) were found in tumour than normal tissue in rats given olive oil (P < 0.05). A similar trend was found in animals fed on maize oil, although differences between normal and tumour tissue did not reach a level of statistical significance (P < 0.1). In mammary PE, maize oil-fed control animals had significantly higher levels of linoleic acid (18:2n-6) than either olive oil- or fish oil-fed animals (P < 0.05, both cases) and levels of arachidonic acid were also higher in maize oil- compared with fish oil-fed animals (P < 0.05). In tumourbearing animals no differences in PE fatty acid composition were found between the three dietary groups. When normal and tumour tissue PE fatty acids were compared, significantly lower amounts of liuoleic acid (18:2n-6; P < 0.01) and significantly greater amounts of arachidonic acid (20:4n-6; P < 0.05) were found in tumour than normal tissue of rats fed on maize oil. The present study shows that the fatty acid composition of PI from both normal and tumour tissue of the mammary gland is resistant to dietary fatty acid modification. The PE fraction is more susceptible to dietary modification and in this fraction there is evidence of increased conversion of linoleic acid to arachidonic acid in tumour compared with normal tissue. Lower tumour incidence rates in rats given fish oils may in part be due to alteration in prostanoid metabolism secondary to displacement of arachidonic acid by eicosapentaenoic acid, but PE rather than PI would appear to be the most likely locus for diet-induced alteration in prostanoid synthesis in this tissue. Effects of dietary fatty acids other than on the balance of n-6 and n-3 fatty acids, and on prostanoid metabolism, should also be considered. The significance of increased stearic acid content of PI in tumours of olive oil-fed animals and the possible influence of dietary fatty acids on the capacity for stearic acid accumulation requires further study.
Resumo:
The fatty acid compositions of the -choline and -inositol phospholipids of breast tumours of women undergoing surgery for treatment of breast disease (malignant n = 12; benign n = 10) and normal breast tissue of women undergoing breast reduction surgery (n = 6) were determined. The fatty acid compositions of erythrocyte phospholipids were also determined in the same subjects and in an additional number of normal healthy volunteers (n = 16). Levels of oleic acid were lower in both phospholipid fractions of erythrocytes of women with breast disease and in the phosphatidylcholine fraction of breast tumours compared with normal breast tissue. Significantly higher levels of linoleic acid were found in erythrocytes of tumour-bearing subjects and a similar trend was evident in the phosphatidylcholine fraction of tumour compared with normal breast tissues. Conversely, lower levels of two of the products of linoleic acid chain elongation and desaturation, dihomogamma-linolenic and arachidonic acids, were found in the erythrocyte phospholipids of tumour-bearing subjects and in the choline phospholipids of breast tumour tissues. These data suggest that in women with breast disease, there may be inhibition of 6-desaturase, and enhanced activity of 9-desaturase, enzymes which play an important role in determining membrane phospholipid fatty acid composition. This pattern of altered fatty acid composition characteristic of erythrocyte phospholipids of tumour-bearing subjects and phosphatidylcholine of breast tumour tissue was less evident in the case of the breast tumour phosphatidylinositol in which differences other than those described were seen.
Resumo:
The present study investigated the effect of feeding maize-oil, olive-oil and fish-oil diets, from weaning to adulthood, on rat mammary tissue and erythrocyte phospholipid fatty acid compositions. Effects of diet on the relative proportions of membrane phospholipids in the two tissues were also investigated. Mammary tissue phosphatidylinositol (PI) fatty acids were unaltered by diet, but differences in phosphatidylethanolamine (PE) and, to a lesser extent, phosphatidylcholine (PC) fractions were found between animals fed on different diets from weaning. Differences observed were those expected from the dietary fatty acids fed; n-6 fatty acids were found in greatest amounts in maize-oil-fed rats, n-9 in olive-oil-fed rats, and n-3 in fish-oil-fed rats. In erythrocytes the relative susceptibilities of the individual phospholipids to dietary modification were: PE > PC > PI, but enrichment with n-9 and n-3 fatty acids was not observed in olive-oil- and fish-oil-fed animals and in PC and PE significantly greater amounts of saturated fatty acids were found when animals fed on olive oil or fish oil were compared with maize-oil-fed animals. The polyunsaturated:saturated fatty acid ratios of PE and PC fractions were significantly lower in olive-oil- and fish-oil-fed animals. No differences in the relative proportions of phospholipid classes were found between the three dietary groups. It is suggested that differences in erythrocyte fatty acid composition may reflect dietary-induced changes in membrane cholesterol content and may form part of a homoeostatic response the aim of which is to maintain normal erythrocyte membrane fluidity. The resistance of mammary tissue PI fatty acids to dietary modification suggests that alteration of PI fatty acids is unlikely to underlie effects of dietary fat on mammary tumour incidence rates.
Resumo:
Transport and deposition of charged inhaled aerosols in double planar bifurcation representing generation three to five of human respiratory system has been studied under a light activity breathing condition. Both steady and oscillatory laminar inhalation airflow is considered. Particle trajectories are calculated using a Lagrangian reference frame, which is dominated by the fluid force driven by airflow, gravity force and electrostatic forces (both of space and image charge forces). The particle-mesh method is selected to calculate the space charge force. This numerical study investigates the deposition efficiency in the three-dimensional model under various particle sizes, charge values, and inlet particle distribution. Numerical results indicate that particles carrying an adequate level of charge can improve deposition efficiency in the airway model.
Resumo:
A new numerical modeling of inhaled charge aerosol has been developed based on a modified Weibel's model. Both the velocity profiles (slug and parabolic flows) and the particle distributions (uniform and parabolic distributions) have been considered. Inhaled particles are modeled as a dilute dispersed phase flow in which the particle motion is controlled by fluid force and external forces acting on particles. This numerical study extends the previous numerical studies by considering both space- and image-charge forces. Because of the complex computation of interacting forces due to space-charge effect, the particle-mesh (PM) method is selected to calculate these forces. In the PM technique, the charges of all particles are assigned to the space-charge field mesh, for calculating charge density. The Poisson's equation of the electrostatic potential is then solved, and the electrostatic force acting on individual particle is interpolated. It is assumed that there is no effect of humidity on charged particles. The results show that many significant factors also affect the deposition, such as the volume of particle cloud, the velocity profile and the particle distribution. This study allows a better understanding of electrostatic mechanism of aerosol transport and deposition in human airways.
Resumo:
A peptide amphiphile (PA) C16-KTTKS, containing a pentapeptide headgroup based on a sequence from procollagen I attached to a hexadecyl lipid chain, self-assembles into extended nanotapes in aqueous solution. The tapes are based on bilayer structures, with a 5.2 nm spacing. Here, we investigate the effect of addition of the oppositely charged anionic surfactant sodium dodecyl sulfate (SDS) via AFM, electron microscopic methods, small-angle X-ray scattering and X-ray diffraction among other methods. We show that addition of SDS leads to a transition from tapes to fibrils, via intermediate states that include twisted ribbons. Addition of SDS is also shown to enhance the development of remarkable lateral ‘‘stripes’’ on the nanostructures, which have a 4 nm periodicity. This is ascribed to counterion condensation. The transition in the nanostructure leads to changes in macroscopic properties, in particular a transition from sol to gel is noted on increasing SDS (with a further reentrant transition to sol on further increase of SDS concentration). Formation of a gel may be useful in applications of this PA in skincare applications and we show that this can be controlled via development of a network of fine stranded fibrils.
Resumo:
In biological mass spectrometry (MS), two ionization techniques are predominantly employed for the analysis of larger biomolecules, such as polypeptides. These are nano-electrospray ionization [1, 2] (nanoESI) and matrix-assisted laser desorption/ionization [3, 4] (MALDI). Both techniques are considered to be “soft”, allowing the desorption and ionization of intact molecular analyte species and thus their successful mass-spectrometric analysis. One of the main differences between these two ionization techniques lies in their ability to produce multiply charged ions. MALDI typically generates singly charged peptide ions whereas nanoESI easily provides multiply charged ions, even for peptides as low as 1000 Da in mass. The production of highly charged ions is desirable as this allows the use of mass analyzers, such as ion traps (including orbitraps) and hybrid quadrupole instruments, which typically offer only a limited m/z range (< 2000–4000). It also enables more informative fragmentation spectra using techniques such as collisioninduced dissociation (CID) and electron capture/transfer dissociation (ECD/ETD) in combination with tandem MS (MS/MS). [5, 6] Thus, there is a clear advantage of using ESI in research areas where peptide sequencing, or in general, the structural elucidation of biomolecules by MS/MS is required. Nonetheless, MALDI with its higher tolerance to contaminants and additives, ease-of-operation, potential for highspeed and automated sample preparation and analysis as well as its MS imaging capabilities makes it an ionization technique that can cover bioanalytical areas for which ESI is less suitable. [7, 8] If these strengths could be combined with the analytical power of multiply charged ions, new instrumental configurations and large-scale proteomic analyses based on MALDI MS(/MS) would become feasible.
Resumo:
The formation of complexes in solutions of oppositely charged polyions has been studied by Monte Carlo simulations. The amount as well as the length, and thus, the absolute charge of one of the polyions have been varied. There is an increasing tendency to form large clusters as the excess of one kind of polyion decreases. When all polyions have the same length, this tendency reaches a maximum near, but off, equivalent amounts of the two types of polyions. When one kind of polyion is made shorter, the propensity to form large clusters decreases and the fluctuations in cluster charge increases. Simple free-energy expressions have been formulated on the basis of a set of simple rules that help rationalize the observations. By calculating cluster distributions in both grand canonical and canonical ensembles, it has been possible to show the extent of finite-size effects in the simulations.
Resumo:
Layer clouds are globally extensive. Their lower edges are charged negatively by the fair weather atmospheric electricity current flowing vertically through them. Using polar winter surface meteorological data from Sodankyla ̈ (Finland) and Halley (Antarctica), we find that when meteorological diurnal variations are weak, an appreciable diurnal cycle, on average, persists in the cloud base heights, detected using a laser ceilometer. The diurnal cloud base heights from both sites correlate more closely with the Carnegie curve of global atmospheric electricity than with local meteorological measurements. The cloud base sensitivities are indistinguishable between the northern and southern hemispheres, averaging a (4.0 ± 0.5) m rise for a 1% change in the fair weather electric current density. This suggests that the global fair weather current, which is affected by space weather, cosmic rays and the El Nin ̃o Southern Oscillation, is linked with layer cloud properties.