951 resultados para NECK CANCERS
Resumo:
Methylating agents are involved in carcinogenesis, and the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) removes methyl group from O(6)-methylguanine. Genetic variation in DNA repair genes has been shown to contribute to susceptibility to squamous cell carcinoma of the head and neck (SCCHN). We hypothesize that MGMT polymorphisms are associated with risk of SCCHN. In a hospital-based case-control study of 721 patients with SCCHN and 1234 cancer-free controls frequency-matched by age, sex and ethnicity, we genotyped four MGMT polymorphisms, two in exon 3, 16195C>T and 16286C>T and two in the promoter region, 45996G>T and 46346C>A. We found that none of these polymorphisms alone had a significant effect on risk of SCCHN. However, when these four polymorphisms were evaluated together by the number of putative risk genotypes (i.e. 16195CC, 16286CC, 45996GT+TT, and 46346CA+AA), a statistically significantly increased risk of SCCHN was associated with the combined genotypes with three to four risk genotypes, compared with those with zero to two risk genotypes (adjusted odds ratio (OR)=1.27; 95% confidence interval (CI)=1.05-1.53). This increased risk was also more pronounced among young subjects (OR=1.81; 95% CI=1.11-2.96), men (OR=1.24; 95% CI=1.00-1.55), ever smokers (OR=1.25; 95%=1.01-1.56), ever drinkers (OR=1.29; 95% CI=1.04-1.60), patients with oropharyngeal cancer (OR=1.45; 95% CI=1.12-1.87), and oropharyngeal cancer with regional lymph node metastasis (OR=1.52; 95% CI=1.16-1.89). In conclusion, our results suggest that any one of MGMT variants may not have a substantial effect on SCCHN risk, but a joint effect of several MGMT variants may contribute to risk and progression of SCCHN, particularly for oropharyngeal cancer, in non-Hispanic whites.
Resumo:
Purpose: First, to determine an average and maximum displacement of the shoulder relative to isocenter over the course of treatment. Second, to establish the dosimetric effect of shoulder displacements relative to correct isocenter alignment on the dose delivered to the target and the surrounding structures for head and neck cancer patients. Method and Materials: The frequency of shoulder shifts of various magnitudes relative to isocenter was assessed for 4 patients using image registration software. The location of the center of the right and left humeral head relative to isocenter (usually C2) was found daily from CT on rails scans, and was compared to the location of the humeral heads relative to isocenter on the initial simulation CT. Three Baseline head and neck IMRT and SmartArc plans were generated in Pinnacle based on simulation CTs. The CT datasets (external contour and boney structures) were then modified to represent shifts of the shoulder (relative to isocenter) between 3 mm and 15 mm in the SI, AP, and LR directions. The initial plans were recalculated on the image sets with shifted shoulders. Results: On average, shoulder variation was 2-5 mm in each direction, although displacements of over 1 cm in the inferior and posterior directions occurred. Shoulder shifts induced perturbations in the dose distribution, although generally only for large shifts. Most substantially, large, superior shifts resulted in coverage loss by the 95% isodose line for targets in the lower neck. Inferior shifts elevated the dose to the brachial plexus by 0.6-4.1 Gy. SmartArc plans showed similar loss of target coverage as IMRT plans. Conclusions: The position of the shoulder can have an impact on target coverage and critical structure dose. Shoulder position may need to be considered for setup of head and neck patients depending on target location.
Resumo:
Intensity modulated radiation therapy (IMRT) is a technique that delivers a highly conformal dose distribution to a target volume while attempting to maximally spare the surrounding normal tissues. IMRT is a common treatment modality used for treating head and neck (H&N) cancers, and the presence of many critical structures in this region requires accurate treatment delivery. The Radiological Physics Center (RPC) acts as both a remote and on-site quality assurance agency that credentials institutions participating in clinical trials. To date, about 30% of all IMRT participants have failed the RPC’s remote audit using the IMRT H&N phantom. The purpose of this project is to evaluate possible causes of H&N IMRT delivery errors observed by the RPC, specifically IMRT treatment plan complexity and the use of improper dosimetry data from machines that were thought to be matched but in reality were not. Eight H&N IMRT plans with a range of complexity defined by total MU (1460-3466), number of segments (54-225), and modulation complexity scores (MCS) (0.181-0.609) were created in Pinnacle v.8m. These plans were delivered to the RPC’s H&N phantom on a single Varian Clinac. One of the IMRT plans (1851 MU, 88 segments, and MCS=0.469) was equivalent to the median H&N plan from 130 previous RPC H&N phantom irradiations. This average IMRT plan was also delivered on four matched Varian Clinac machines and the dose distribution calculated using a different 6MV beam model. Radiochromic film and TLD within the phantom were used to analyze the dose profiles and absolute doses, respectively. The measured and calculated were compared to evaluate the dosimetric accuracy. All deliveries met the RPC acceptance criteria of ±7% absolute dose difference and 4 mm distance-to-agreement (DTA). Additionally, gamma index analysis was performed for all deliveries using a ±7%/4mm and ±5%/3mm criteria. Increasing the treatment plan complexity by varying the MU, number of segments, or varying the MCS resulted in no clear trend toward an increase in dosimetric error determined by the absolute dose difference, DTA, or gamma index. Varying the delivery machines as well as the beam model (use of a Clinac 6EX 6MV beam model vs. Clinac 21EX 6MV model), also did not show any clear trend towards an increased dosimetric error using the same criteria indicated above.
Resumo:
Advances in radiotherapy have generated increased interest in comparative studies of treatment techniques and their effectiveness. In this respect, pediatric patients are of specific interest because of their sensitivity to radiation induced second cancers. However, due to the rarity of childhood cancers and the long latency of second cancers, large sample sizes are unavailable for the epidemiological study of contemporary radiotherapy treatments. Additionally, when specific treatments are considered, such as proton therapy, sample sizes are further reduced due to the rareness of such treatments. We propose a method to improve statistical power in micro clinical trials. Specifically, we use a more biologically relevant quantity, cancer equivalent dose (DCE), to estimate risk instead of mean absorbed dose (DMA). Our objective was to demonstrate that when DCE is used fewer subjects are needed for clinical trials. Thus, we compared the impact of DCE vs. DMA on sample size in a virtual clinical trial that estimated risk for second cancer (SC) in the thyroid following craniospinal irradiation (CSI) of pediatric patients using protons vs. photons. Dose reconstruction, risk models, and statistical analysis were used to evaluate SC risk from therapeutic and stray radiation from CSI for 18 patients. Absorbed dose was calculated in two ways: with (1) traditional DMA and (2) with DCE. DCE and DMA values were used to estimate relative risk of SC incidence (RRCE and RRMA, respectively) after proton vs. photon CSI. Ratios of RR for proton vs. photon CSI (RRRCE and RRRMA) were then used in comparative estimations of sample size to determine the minimal number of patients needed to maintain 80% statistical power when using DCE vs. DMA. For all patients, we found that protons substantially reduced the risk of developing a second thyroid cancer when compared to photon therapy. Mean RRR values were 0.052±0.014 and 0.087±0.021 for RRRMA and RRRCE, respectively. However, we did not find that use of DCE reduced the number of patents needed for acceptable statistical power (i.e, 80%). In fact, when considerations were made for RRR values that met equipoise requirements and the need for descriptive statistics, the minimum number of patients needed for a micro-clinical trial increased from 17 using DMA to 37 using DCE. Subsequent analyses revealed that for our sample, the most influential factor in determining variations in sample size was the experimental standard deviation of estimates for RRR across the patient sample. Additionally, because the relative uncertainty in dose from proton CSI was so much larger (on the order of 2000 times larger) than the other uncertainty terms, it dominated the uncertainty in RRR. Thus, we found that use of corrections for cell sterilization, in the form of DCE, may be an important and underappreciated consideration in the design of clinical trials and radio-epidemiological studies. In addition, the accurate application of cell sterilization to thyroid dose was sensitive to variations in absorbed dose, especially for proton CSI, which may stem from errors in patient positioning, range calculation, and other aspects of treatment planning and delivery.
Resumo:
Currently, there are no molecular biomarkers that guide treatment decisions for patients with head and neck squamous cell carcinoma (HNSCC). Several retrospective studies have evaluated TP53 in HNSCC, and results have suggested that specific mutations are associated with poor outcome. However, there exists heterogeneity among these studies in the site and stage of disease of the patients reviewed, the treatments rendered, and methods of evaluating TP53 mutation. Thus, it remains unclear as to which patients and in which clinical settings TP53 mutation is most useful in predicting treatment failure. In the current study, we reviewed the records of a cohort of patients with advanced, resectable HNSCC who received surgery and post-operative radiation (PORT) and had DNA isolated from fresh tumor tissue obtained at the time of surgery. TP53 mutations were identified using Sanger sequencing of exons 2-11 and the associated splice regions of the TP53 gene. We have found that the group of patients with either non-disruptive or disruptive TP53 mutations had decreased overall survival, disease-free survival, and an increased rate of distant metastasis. When examined as an independent factor, disruptive mutation was strongly associated with the development of distant metastasis. As a second aim of this project, we performed a pilot study examining the utility of the AmpliChip® p53 test as a practical method for TP53 sequencing in the clinical setting. AmpliChip® testing and Sanger sequencing was performed on a separate cohort of patients with HNSCC. Our study demonstrated the ablity of the AmpliChip® to call TP53 mutation from a single formalin-fixed paraffin-embedded slide. The results from AmpliChip® testing were identical with the Sanger method in 11 of 19 cases, with a higher rate of mutation calls using the AmpliChip® test. TP53 mutation is a potential prognostic biomarker among patients with advanced, resectable HNSCC treated with surgery and PORT. Whether this subgroup of patients could benefit from the addition of concurrent or induction chemotherapy remains to be evaluated in prospective clinical trials. Our pilot study of the p53 AmpliChip® suggests this could be a practical and reliable method of TP53 analysis in the clinical setting.
Resumo:
Alterations in oncogenes and tumor suppressor genes (TSGs) are considered to be critical steps in oncogenesis. Consistent deletions and loss of heterozygosity (LOH) of polymorphic markers in a determinate chromosomal fragment are known to be indicative of a closely mapping TSG. Deletion of the long arm of chromosome 7 (hchr 7) is a frequent trait in many kinds of human primary tumors. LOH was studied with an extensive set of markers on chromosome 7q in several types of human neoplasias (primary breast, prostate, colon, ovarian and head and neck carcinomas) to determine the location of a putative TSG. The extent of LOH varied depending the type of tumor studied but all the LOH curves we obtained had a peak at (C-A)$\sb{\rm n}$ microsatellite repeat D7S522 at 7q31.1 and showed a Gaussian distribution. The high incidence of LOH in all tumor types studied suggests that a TSG relevant to the development of epithelial cancers is present on the 7q31.1. To investigate whether the putative TSG is conserved in the syntenic mouse locus, we studied LOH of 30 markers along mouse chromosome 6 (mchr 6) in chemically induced squamous cell carcinomas (SCCs). Tumors were obtained from SENCAR and C57BL/6 x DBA/2 F1 females by a two-stage carcinogenesis protocol. The high incidence of LOH in the tumor types studied suggests that a TSG relevant to the development of epithelial cancers is present on mchr 6 A1. Since this segment is syntenic with the hchr 7q31, these data indicate that the putative TSG is conserved in both species. Functional evidence for the existence of a TSG in hchr 7 was obtained by microcell fusion transfer of a single hchr 7 into a murine SCC-derived cell line. Five out of seven hybrids had two to three-fold longer latency periods for in vivo tumorigenicity assays than parental cells. One of the unrepressed hybrids had a deletion in the introduced chromosome 7 involving q31.1-q31.3, confirming the LOH data. ^
Resumo:
Patients with head and neck squamous cell carcinoma (HNSCC) demonstrate abnormal cell-mediated immunity which is most pronounced at the primary tumor site. Therefore, we tested whether this aberrant immunity could be due to tumor-derived cytokines. We investigated the presence of cytokine mRNA and protein in 8 HNSCC-derived cell lines; RT-PCR results indicated mRNA's for IL-1$\alpha$ and TGF-$\alpha$ (8/8), TGF-$\beta$ (7/8), IL-1$\beta$ (7/8), IL-4 and IL-6 (4/8). IL-2, IFN-$\gamma,$ and TNF-$\alpha$ mRNA was not detected. Supernatants from 6 of these cell lines were analyzed by ELISA and IL-1$\alpha,$ IL-1$\beta,$ and IL-6 were markedly increased compared to HPV-16 immortalized human oral keratinocytes. IL-1$\alpha$ was found in the highest concentration $>$IL-6 $>$ IL-1$\beta.$^ To approach the mechanisms of cytokine regulation, 4 cell lines were compared for HPV DNA presence, p53 status, and cytokine expression. An association between HPV DNA and cytokine expression was not found. However, cell lines secreting the most IL-6 had mutant p53 and/or HPV 16 E6/E7 expression. Further regulatory investigations revealed that exogenous IL-1$\alpha$ and/or IL-1$\beta$ minimally stimulated the proliferation of 2/3 cell lines, as well as strongly induced IL-6 production in 3/3; this effect was completely abrogated by IL-1Ra. IL-1Ra also inhibited the secretion of IL-1$\alpha$ and IL-1$\beta$ in 2/3 cell lines. These data suggest an IL-1 autocrine loop in certain HNSCC cell lines. Because IL-2 induces IL-1 and is used in therapy of HNSCC, the expression of IL-2 receptor was also investigated; IL-2 $\alpha$ and $\beta$ subunits were detected in 3/3 cell lines and $\gamma$ subunits was detected in one. Exogenous IL-2 inhibited the proliferation, but stimulated the secretion of IL-1$\alpha$ in 2/3, and IL-1$\beta$ and IL-6 in 1/3 cell lines.^ To determine if our cell line findings were applicable to patients, immunohistochemistry was performed on biopsies from 12 invasive tumors. Unexpectedly, universal intracellular production of IL-1$\alpha,$ IL-1$\beta,$ and IL-6 protein was detected. Therefore, the aberrant elaboration of biologically active IL-1 and IL-6 may contribute to altered immune status in HNSCC patients. ^
Resumo:
Retinoids such as all-trans-retinoic acid (ATRA) are promising agents for cancer chemoprevention and therapy. ATRA can cause growth inhibition, induction of differentiation and apoptosis of a variety of cancer cells. These effects are thought to be mediated by nuclear retinoids receptors which are involved in ligand-dependent transcriptional activation of downstream target genes. Using differential display, we identified several retinoic acid responsive genes in the head and neck squamous carcinoma cells and lung cancer cells, including tissue type transglutaminase, cytochrome P450-related retinoic acid hydroxylase, and a novel gene, designated RAIG1. RAIG1 has two transcripts of 2.4 and 6.8 kbp, respectively, that are generated by alternative selection of polyadenylation sites. Both transcripts have the same open reading frame that encodes a protein comprised of 357 amino acid residues. The deduced RAIG1 protein sequence contains seven transmembrane domains, a signature structure of G protein-coupled receptors. RAIG1 mRNA is expressed at high level in fetal and adult lung tissues. Induction of RAIG1 expression by ATRA is rapid and dose-dependent. A fusion protein of RAIG1 and the green fluorescent protein was localized in the cell surface membrane and perinuclear vesicles in transiently transfected cells. The locus for RAIG1 gene was mapped to a region between D12S358 and D12S847 on chromosome 12p12.3-p13. Our study of the novel retinoic acid induced gene RAIG1 provide evidence for a possible interaction between retinoid and G protein signaling pathways.^ We further examined RAIG1 expression pattern in a panel of 84 cancer cell lines of different origin. The expression level varies greatly from very high to non-detectable. We selected a panel of different cancer cells to study the effects of retinoids and other differentiation agents. We observed: (1) In most cases, retinoids (including all-trans retinoic acid, 4HPR, CD437) could induce the expression of RAIG-1 in cells from cancers of the breast, colon, head and neck, lung, ovarian and prostate. (2) Compare to retinoids, butyrate is often a more potent inducer of RAIG-1 expression in many cancer cells. (3) Butyrate, Phenylacetate butyrate, (R)P-Butyrate and (S)P-Butyrate have different impact on RAIG1 expression which varies among different cell lines. Our results indicate that retinoids could restore RAIG1 expression that is down-regulated in many cancer cells.^ A mouse homologous gene, mRAIG1, was cloned by 5$\sp\prime$ RACE reaction. mRAIG1 cDNA has 2105 bp and shares 63% identity with RAIG1 cDNA. mRAIG1 encodes a polypeptide of 356 amino acid which is 76% identity with RAIG1 protein. mRAIG1 protein also has seven transmembrane domains which are structurally identical to those of RAIG1 protein. Only one 2.2 kbp mRAIG1 transcript could be detected. The mRAIG1 mRNA is also highly expressed in lung tissue. The expression of mRAIG1 gene could be induced by ATRA in several mouse embryonal carcinoma cells. The induction of mRAIG1 expression is associated with retinoic acid-induced neuroectoderm differentiation of P19 cells. Similarity in cDNA and protein sequence, secondary structure, tissue distribution and inducible expression by retinoic acid strongly suggest that the mouse gene is the homologue of the human RAIG1 gene. ^
Resumo:
BACKGROUND To investigate the role of nonsurgical treatment for early-stage esophageal cancer, we compared the outcomes of local therapy to esophagectomy, using a large, national database. METHODS Five-year cancer-specific and overall survival (OS) of patients, with T1N0M0 squamous cell or adenocarcinoma of the mid or distal esophagus treated with either surgery or local therapy, with ablative and/or excision techniques, in the Surveillance Epidemiology and End Results cancer registry from 1998 to 2008, were compared using the Kaplan-Meier approach, and multivariable and propensity-score adjusted Cox proportional hazard, and competing risk models. RESULTS Of 1458 patients with T1N0 esophageal cancer, 1204 (83%) had surgery and 254 (17%) had local therapy only. The use of local therapy increased significantly from 8.1% in 1998 to 24.1% in 2008 (p < 0.001). The 5-year OS after local excisional therapy and surgery was not significantly different (55.5% versus 64.1% respectively, p = 0.07), and 5-year cancer-specific survival (CSS) also did not differ (81.7% versus 75.8%, p = 0.10). However, after propensity-score adjustment, CSS was better for patients who underwent local therapy compared with those who underwent surgery (hazard ratio: 0.46, 95% confidence interval: 0.27-0.77, p = 0.003), whereas OS remained similar. CONCLUSION The use of local therapy for T1N0 esophageal cancers increased significantly from 1998 to 2008. Compared with those treated with esophagectomy, patients treated with local therapy had similar OS but improved CSS, indicating a higher chance of dying from other causes. Further studies are needed to confirm the oncologic efficacy of local therapy when used in patients whose lifespans are not limited by conditions other than esophageal cancer.
Resumo:
Head and neck cancer constitutes the 6th most common malignancy worldwide and affects the crucial anatomical structures and physiological functions of the upper aerodigestive tract. Classical therapeutic strategies such as surgery and radiotherapy carry substantial toxicity and functional impairment. Moreover, the loco-regional control rates as well as overall survival still need to be improved in subgroups of patients. The scatter-factor/hepatocyte growth factor receptor tyrosine kinase MET is an established effector in the promotion, maintenance and progression of malignant transformation in a wide range of human malignancies, and has been gaining considerable interest in head and neck cancer over the last 15 years. Aberrant MET activation due to overexpression, mutations, tumor-stroma paracrine loops, and cooperative/redundant signaling has been shown to play prominent roles in epithelial-to-mesenchymal transition, angiogenesis, and responses to anti-cancer therapeutic modalities. Accumulating preclinical and translational evidence highly supports the increasing interest of MET as a biomarker for lymph node and distant metastases, as well as a potential marker of stratification for responses to ionizing radiation. The relevance of MET as a therapeutic molecular target in head and neck cancer described in preclinical studies remains largely under-evaluated in clinical trials, and therefore inconclusive. Also in the context of anti-cancer targeted therapy, a large body of preclinical data suggests a central role for MET in treatment resistance towards multiple therapeutic modalities in malignancies of the head and neck region. These findings, as well as the potential use of combination therapies including MET inhibitors in these tumors, need to be further explored.
Resumo:
AIMS Tumour buds in colorectal cancer represent an aggressive subgroup of non-proliferating and non-apoptotic tumour cells. We hypothesize that the survival of tumour buds is dependent upon anoikis resistance. The role of tyrosine kinase receptor B (TrkB), a promoter of epithelial-mesenchymal transition and anoikis resistance, in facilitating budding was investigated. METHODS AND RESULTS Tyrosine kinase receptor B immunohistochemistry was performed on a multiple-punch tissue microarray of 211 colorectal cancer resections. Membranous/cytoplasmic and nuclear expression was evaluated in tumour and buds. Tumour budding was assessed on corresponding whole tissue slides. Relationship to Ki-67 and caspase-3 was investigated. Analysis of Kirsten Ras (KRAS), proto-oncogene B-RAF (BRAF) and cytosine-phosphate-guanosine island methylator phenotype (CIMP) was performed. Membranous/cytoplasmic and nuclear TrkB were strongly, inversely correlated (P < 0.0001; r = -0.41). Membranous/cytoplasmic TrkB was overexpressed in buds compared to the main tumour body (P < 0.0001), associated with larger tumours (P = 0.0236), high-grade budding (P = 0.0011) and KRAS mutation (P = 0.0008). Nuclear TrkB was absent in buds (P <0.0001) and in high-grade budding cancers (P =0.0073). Among patients with membranous/cytoplasmic TrkB-positive buds, high tumour membranous/cytoplasmic TrkB expression was a significant, independent adverse prognostic factor [P = 0.033; 1.79, 95% confidence interval (CI) 1.05-3.05]. Inverse correlations between membranous/cytoplasmic TrkB and Ki-67 (r = -0.41; P < 0.0001) and caspase-3 (r =-0.19; P < 0.05) were observed. CONCLUSIONS Membranous/cytoplasmic TrkB may promote an epithelial-mesenchymal transition (EMT)-like phenotype with high-grade budding and maintain viability of buds themselves.
Resumo:
BACKGROUND TMPRSS2-ERG gene fusion is the most frequent genetic alteration in prostate cancer. However, information about its distribution in lymph node positive prostate cancers and the prognostic significance in these advanced tumors is unknown. METHODS Gene fusion status was determined by fluorescence in situ hybridization on a tissue-microarray constructed from 119 hormone-naïve nodal positive, surgically treated prostate cancers containing samples from the primary tumors and corresponding lymph node metastases. Data were correlated with various tumor features (Gleason score, stage, cancer volume, nodal tumor burden) and biochemical recurrence-free, disease-specific, and overall survival. RESULTS TMPRSS2-ERG fusion was detected in 43.5% of the primary tumors. Conversely, only 29.9% of the metastasizing components showed the fusion. Concordance in TMPRSS2-ERG status between primary tumors and metastases was 70.9% (Kappa 0.39); 20.9% and 8.1% of the patients showed the mutation solely in their primary tumors and metastases, respectively. TMPRSS2-ERG fusion was not correlated with specific histopathological tumor features but predicted favorable biochemical recurrence-free, disease-specific and overall survival independently when present in the primary tumor (P < 0.05 each). CONCLUSION TMPRSS2-ERG fusion is more frequent in primary prostate cancer than in corresponding metastases suggesting no selection of fusion-positive cells in the metastatic process. The gene fusion in primary tumors independently predicts favorable outcome.