870 resultados para NANOTUBE-MODIFIED ELECTRODES
Resumo:
Electrodes modified with poly(5-amino-1-naphthol)/Prussian blue (poly(5-NH2-1-NAP)/PB) hybrid films are able to electrochemically reduce H2O2 in medium containing an excess of Na+ cations. This is an important advantage for biosensing applications over electrodes in which only conventionally (electro) deposited Prussian blue is present. Consequently, the aim of this work was to examine the application of templates of ordered arrays of colloidal poly(styrene) spheres (800, 450 and 100 nm in diameter) to produce inverse opal structures of poly(5-NH2-1-NAP)/PB hybrid platforms, in an effort to study the influence of the increase in surface area/volume ratio and higher exposition of the mediator active sites on material performance during H2O2 determination employing the different sized porous structures. Moreover, since the accentuated hydrophilic character of poly(5-NH2-1-NAP)/PB also allows H2O2 electrochemical reduction in inner active sites, issues concerning the amount of mediator electrodeposited on the electrode were also reflected in the observed results.
Resumo:
Bionanocomposites derived from poly(L-Lactide) (PLLA) were reinforced with chemically modified cellulose nanocrystals (m-CNCs). The effects of these modified cellulose nanoparticles on the mechanical and hydrolytic degradation behavior of polylactide were studied. The m-CNCs were prepared by a method in which hydrolysis of cellulose chains is performed simultaneously with the esterification of hydroxyl groups to produce modified nanocrystals with ester groups. FTIR, elemental analysis, TEM, XRD and contact angle measurements were used to confirm and characterize the chemical modifications of the m-CNCs. These bionanocomposites gave considerably better mechanical properties than neat PLLA based on an approximately 100% increase in tensile strength. Due to the hydrophobic properties of the esterified nanocrystals incorporated into a polymer matrix, it was also demonstrated that a small amount of m-CNCs could lead to a remarkable decrease in the hydrolytic degradation rate of the biopolymer. In addition, the m-CNCs considerably delay the degradation of the nanocomposite by providing a physical barrier that prevents the permeation of water, which thus hinders the overall absorption of water into the matrix. The results obtained in this study show the nanocrystals can be used to reinforce polylactides and fine-tune their degradation rates in moist or physiological environments.
Resumo:
Some models of ion-selective electrodes (ISE) and other methods have been elaborated, to quantify nitrate levels in environmental samples (water, fruits, vegetables and others), using direct potentiometry
Resumo:
Silica gel chemically modified with 2-Aminotiazole groups, abbreviated as SiAT, was used for preconcentration of copper, zinc, nickel and iron from kerosene, normally used as a engine fuel for airplanes. Surface characteristics and surface area of the silica gel were obtained before and after chemical modification using FT-IR, Kjeldhal and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques. The experimental parameters, such as shaking time in batch technique, flow rate and concentration of the eluent (HCl- 0.25-2.00 mol L-1) and the amount of silica, on retention and elution, have been investigated. Detection limits of the method for copper, iron, nickel and zinc are 0.77, 2.92, 1.73 and 0.097 mg L-1, respectively. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in kerosene using flame AAS for their quantification.
Resumo:
This work is directed to the study and evaluation of gas diffusion electrodes as detectors in hydrogen sensors. Electrochemical experiments were carried out with rotating disk electrodes with a thin porous coating of the catalyst as a previous step to select useful parameters for the sensor. An experimental arrangement made in the laboratory that simulates the sensor was found appropriate to detect volumetric hydrogen percentages above 0.25% in mixtures H2:N2. The system shows a linear response for volumetric percentages of hydrogen between 0.25 and 2 %.
Resumo:
This paper discusses a rapid and sensitive method developed to determine trace levels of mercury in natural water samples by cold vapor atomic absorption spectrometry using a preconcentration system composed by mini-column packed with 100 mg of 2-aminothiazol modified silica gel (SiAT) coupled on-line with the spectrometer's cold vapor generator system. The optimum preconcentration conditions are also described here. The preconcentrated Hg(II) ions were eluted directly from the column to the spectrometer's cold vapor generator system using 100 µL of 2 mol L-1 hydrochloric acid and the retention efficiency achieved exceeded 95%. The enrichment factors determined were 29, 38 and 46 using 3, 4 and 5 mL of preconcentrated aqueous solutions containing 400 ng L-1 of Hg. The detection limit calculated was 5 ng L-1. The preconcentration procedure was applied to determine trace level mercury in spiked river water samples.
Resumo:
The pollution and toxicity problems posed by arsenic in the environment have long been established. Hence, the removal and recovery remedies have been sought, bearing in mind the efficiency, cost effectiveness and environmental friendliness of the methods employed. The sorption kinetics and intraparticulate diffusivity of As (III) bioremediation from aqueous solution using modified and unmodified coconut fiber was investigated. The amount adsorbed increased as time increased, reaching equilibrium at about 60 minutes. The kinetic studies showed that the sorption rates could be described by both pseudo-first order and pseudo-second order process with the later showing a better fit with a value of rate constant of 1.16 x 10-4 min-1 for the three adsorbent types. The mechanism of sorption was found to be particle diffusion controlled. The diffusion and boundary layer effects were also investigation. Therefore, the results show that coconut fiber, both modified and unmodified is an efficient sorbent for the removal of As (III) from industrial effluents with particle diffusion as the predominant mechanism.
Resumo:
An activated carbon was obtained by chemical activation with phosphoric acid, CM, from a mineral carbon. Afterwards, the carbon was modified with 2 and 5 molL-1, CMox2 and CMox5 nitric acid solutions to increase the surface acid group contents. Immersion enthalpy at pH 4 values and Pb2+ adsorption isotherms were determined by immersing activated carbons in aqueous solution. The surface area values of the adsorbents and total pore volume were approximately 560 m².g-1 and 0.36 cm³g-1, respectively. As regards chemical characteristics, activated carbons had higher acid sites content, 0.92-2.42 meq g-1, than basic sites, 0.63-0.12 meq g-1. pH values were between 7.4 and 4.5 at the point of zero charge, pH PZC. The adsorbed quantity of Pb2+ and the immersion enthalpy in solution of different pH values for CM activated carbon showed that the values are the highest for pH 4, 15.7 mgg-1 and 27.6 Jg-1 respectively. Pb2+ adsorption isotherms and immersion enthalpy were determined for modified activated carbons and the highest values were obtained for the activated carbon that showed the highest content of total acid sites on the surface.
Resumo:
An amperometric sensor was constructed, by using humic acids to immobilize Fe3+ ions on a carbon paste electrode (CPE-HA-Fe), and used for ascorbic acid (H2A) determination. The cyclic voltammogram of the electrode showed electrochemical response due to the Fe3+/Fe2+ couple at E1/2=+0.78 V vs SCE, using 0.5 mol L-1 KCl and 0.2 mol L-1 acetate/0.020 mol L-1 phosphate buffer, at pH = 5.4, as supporting electrolyte. When H2A is added to the electrolyte solution it is observed an oxidation process. The oxidation current, obtained by chronoamperommetry at +0.87 V vs SCE, is proportional to the concentration, represented by the equation I(µA) = 7.6286 [H2A] (mmol L-1) + 1.9583, r = 0.9996, for concentrations between 0.0 and 1.4 mmol L-1. The electrode showed high stability and was used for H2A determination in a natural orange juice.
Resumo:
The need to clean-up heavy metal contaminated environment can not be over emphasized. This paper describes the adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions from aqueous solution using unmodified and EDTA-modified maize cob. Maize cob was found to be an excellent adsorbent for the removal of these metal ions. The amount of metal ions adsorbed increased as the initial concentration increased. Also, EDTA - modification enhanced the adsorption capacity of maize cob probably due to the chelating ability of EDTA. Among the three adsorption isotherm tested, Dubinin-Radushkevich gave the best fit with R² value ranging from 0.9539 to 0.9973 and an average value of 0.9819. This is followed by Freundlich isotherm (Ave. 0.9783) and then the Langmuir isotherm (Ave. 0.7637). The sorption process was found to be a physiosorption process as seen from the apparent energy of adsorption which ranged from 2.05KJ\mol to 4.56KJ\mol. Therefore, this study demonstrates that maize cob which is an environmental pollutant could be used to adsorb heavy metals and achieve cleanliness thereby abating environmental nuisance caused by the maize cob.
Use of modified silica gel for concentrating Pb (II) and Cd (II) occurring in form of complex anions
Resumo:
The performance of silica gel, modified by the impregnation with a high molecular weight quaternary amine (triethyl octadecyl ammonium iodide), used for the concentration of heavy metals occurring in water is studied. The material under study captures Cd, Pb, which are capable of forming stable complexes with I- ions.The results obtained about the metal capture, under dynamic conditions, are described and metal ions are removed by desorption with EDTA and quantified by AAS.
Resumo:
The performance of a carbon paste electrode (CPE) modified with SBA-15 nanostructured silica organofunctionalised with 2-benzothiazolethiol for determination of Cu(II) ions in sugar cane spirit (cachaça) is described, based on differential pulse anodic stripping voltammetry (DPASV) procedure. The Cu(II) oxidation peak was observed at 0.03 V (vs. SCE) in phosphate solution (pH 3.0). The results were obtained using optimised conditions such as 100 mV pulse amplitude, 3 min accumulation time, 25 mV s-1 scan rate in phosphate solution pH 3.0, resulting in a linear dynamic range from 8.0 x 10-7 to 1.0 x 10-5 mol L-1 Cu(II) and a limit of detection 2.0 x10-7 mol L-1. Cu(II) spiked in a cachaça sample was determined with 102.5 % mean recovery at mmol L-1 level. Interference from other metallic cations present in the sample was avoided by the standard addition procedure.
Resumo:
The adsorption kinetics and equilibrium of methylene blue (MB) onto reticulated formic lignin (RFL) from sugar cane bagasse was studied. The adsorption process is pH, temperature and ionic strength (µ) dependent and obeys the Langmuir model. Conditions for higher adsorption rate and capacity were determined. The faster adsorption (12 hours) and higher adsorption capacity (34.20 mg.g-1) were observed at pH = 5.8 (acetic acid-sodium acetate aqueous buffer), 50 ºC and 0.1 ionic strength. Under temperature (50 ºC) control and occasional mechanical stirring it took from 1 to 10 days to reach the equilibrium.
Resumo:
A procedure for separation and preconcentration of trace amounts of Zn(II) from aqueous media is proposed. The procedure is based on the adsorption of Zn2+ on octadecyl bonded silica membrane disk modified with N,N'-disalicylidene-1,2-phenylendiamine at pH 7. The retained zinc ions were then stripped from the disk with a minimal amount of 1.5 mol L-1 hydrochloric acid solution as eluent, and determined by flame atomic absorption spectrometry. Maximum capacity of the membrane disk modified with 5 mg of the ligand was found to be 226 µg Zn2+. The relative standard deviation of zinc for ten replicate extraction of 10 µg zinc from 1000 mL samples was 1.2%. The limit of detection of the proposed method was 14 ng of Zn2+ per 1000 mL. The method was successfully applied to the determination of zinc in natural water samples and accuracy was examined by recovery experiments and independent analysis by graphite furnace atomic absorption spectrometry (GFAAS).
Resumo:
Unprocessed native starches are structurally too weak and functionally too restricted for application in today's advanced food technologies. Processing is necessary to engender a range of functionality. Naturals or natives starches can be modified by using several methods physical, chemical, enzymatic or combined, according industrial purposes. In this work, native corn starch was hydrolyzed by hydrochloric acid solution and investigated by using thermoanalytical techniques (thermogravimetry - TG, differential thermal analysis - DTA and differential scanning calorimetry - DSC), as well as optical microscopy and X-ray diffractometry. After acid treatment at 30 and 50°C, a decrease of gelatinization enthalpy (ΔHgel) was verified. Optical microscopy and X-ray diffractometry allowed us to verify the granules contorn and rugosity typical of cereal starches.