918 resultados para Multiple Objective Optimization
Resumo:
Porosity development of mesostructured colloidal silica nanoparticles is related to the removal of the organic templates and co-templates which is often carried out by calcination at high temperatures, 500-600 °C. In this study a mild detemplation method based on the oxidative Fenton chemistry has been investigated. The Fenton reaction involves the generation of OH radicals following a redox Fe3+/Fe2+ cycle that is used as catalyst and H2O2 as oxidant source. Improved material properties are anticipated since the Fenton chemistry comprises milder conditions than calcination. However, the general application of this methodology is not straightforward due to limitations in the hydrothermal stability of the particular system under study. The objective of this work is three-fold: 1) reducing the residual Fe in the resulting solid as this can be detrimental for the application of the material, 2) shortening the reaction time by optimizing the reaction temperature to minimize possible particle agglomeration, and finally 3) investigating the structural and textural properties of the resulting material in comparison to the calcined counterparts. It appears that the Fenton detemplation can be optimized by shortening the reaction time significantly at low Fe concentration. The milder conditions of detemplation give rise to enhanced properties in terms of surface area, pore volume, structural preservation, low Fe residue and high degree of surface hydroxylation; the colloidal particles are stable during storage. A relative particle size increase, expressed as 0.11%·h-1, has been determined.
Resumo:
The importance of the changeover process in the manufacturing industry is becoming widely recognised. Changeover is a complete process of changing between the manufacture of one product to manufacture of an alternative product until specified production and quality rates are reached. The initiatives to improve changeover exist in industry, as better changeover process typically contribute to improved quality performance. A high-quality and reliable changeover process can be achieved through implementation of continuous or radical improvements. This research examines the changeover process of Saudi Arabian manufacturing firms because Saudi Arabia’s government is focused on the expansion of GDP and increasing the number of export manufacturing firms. Furthermore, it is encouraging foreign manufacturing firms to invest within Saudi Arabia. These initiatives, therefore, require that Saudi manufacturing businesses develop the changeover practice in order to compete in the market and achieve the government’s objectives. Therefore, the aim of this research is to discover the current status of changeover process implementation in Saudi Arabian manufacturing businesses. To achieve this aim, the main objective of this research is to develop a conceptual model to understand and examine the effectiveness of the changeover process within Saudi Arabian manufacturing firms, facilitating identification of those activities that affect the reliability and high-quality of the process. In order to provide a comprehensive understanding of this area, this research first explores the concept of quality management and its relationship to firm performance and the performance of manufacturing changeover. An extensive body of literature was reviewed on the subject of lean manufacturing and changeover practice. A research conceptual model was identified based on this review, and focus was on providing high-quality and reliable manufacturing changeover processes during set-up in a dynamic environment. Exploratory research was conducted in sample Saudi manufacturing firms to understand the features of the changeover process within the manufacturing sector, and as a basis for modifying the proposed conceptual model. Qualitative research was employed in the study with semi-structured interviews, direct observations and documentation in order to understand the real situation such as actual daily practice and current status of changeover process in the field. The research instrument, the Changeover Effectiveness Assessment Tool (CEAT) was developed to evaluate changeover practices. A pilot study was conducted by examining the CEAT, proposed for the main research. Consequently, the conceptual model was modified and CEAT was improved in response to the pilot study findings. Case studies have been conducted within eight Saudi manufacturing businesses. These case studies assessed the implementation of manufacturing changeover practice in the lighting and medical products sectors. These two sectors were selected based on their operation strategy which was batch production as well as the fact that they fulfilled the research sampling strategy. The outcomes of the research improved the conceptual model, ultimately to facilitate the firms’ adoption and rapid implementation of a high-quality and reliability changeover during the set-up process. The main finding of this research is that Quality’s factors were considering the lowest levels comparing to the other factors which are People, Process and Infrastructure. This research contributes to enable Saudi businesses to implement the changeover process by adopting the conceptual model. In addition, the guidelines for facilitating implementation were provided in this thesis. Therefore, this research provides insight to enable the Saudi manufacturing industry to be more responsive to rapidly changing customer demands.
Resumo:
The aim of the paper is to present a new global optimization method for determining all the optima of the Least Squares Method (LSM) problem of pairwise comparison matrices. Such matrices are used, e.g., in the Analytic Hierarchy Process (AHP). Unlike some other distance minimizing methods, LSM is usually hard to solve because of the corresponding nonlinear and non-convex objective function. It is found that the optimization problem can be reduced to solve a system of polynomial equations. Homotopy method is applied which is an efficient technique for solving nonlinear systems. The paper ends by two numerical example having multiple global and local minima.
Resumo:
Access to healthcare is a major problem in which patients are deprived of receiving timely admission to healthcare. Poor access has resulted in significant but avoidable healthcare cost, poor quality of healthcare, and deterioration in the general public health. Advanced Access is a simple and direct approach to appointment scheduling in which the majority of a clinic's appointments slots are kept open in order to provide access for immediate or same day healthcare needs and therefore, alleviate the problem of poor access the healthcare. This research formulates a non-linear discrete stochastic mathematical model of the Advanced Access appointment scheduling policy. The model objective is to maximize the expected profit of the clinic subject to constraints on minimum access to healthcare provided. Patient behavior is characterized with probabilities for no-show, balking, and related patient choices. Structural properties of the model are analyzed to determine whether Advanced Access patient scheduling is feasible. To solve the complex combinatorial optimization problem, a heuristic that combines greedy construction algorithm and neighborhood improvement search was developed. The model and the heuristic were used to evaluate the Advanced Access patient appointment policy compared to existing policies. Trade-off between profit and access to healthcare are established, and parameter analysis of input parameters was performed. The trade-off curve is a characteristic curve and was observed to be concave. This implies that there exists an access level at which at which the clinic can be operated at optimal profit that can be realized. The results also show that, in many scenarios by switching from existing scheduling policy to Advanced Access policy clinics can improve access without any decrease in profit. Further, the success of Advanced Access policy in providing improved access and/or profit depends on the expected value of demand, variation in demand, and the ratio of demand for same day and advanced appointments. The contributions of the dissertation are a model of Advanced Access patient scheduling, a heuristic to solve the model, and the use of the model to understand the scheduling policy trade-offs which healthcare clinic managers must make. ^
Resumo:
Freeway systems are becoming more congested each day. One contribution to freeway traffic congestion comprises platoons of on-ramp traffic merging into freeway mainlines. As a relatively low-cost countermeasure to the problem, ramp meters are being deployed in both directions of an 11-mile section of I-95 in Miami-Dade County, Florida. The local Fuzzy Logic (FL) ramp metering algorithm implemented in Seattle, Washington, has been selected for deployment. The FL ramp metering algorithm is powered by the Fuzzy Logic Controller (FLC). The FLC depends on a series of parameters that can significantly alter the behavior of the controller, thus affecting the performance of ramp meters. However, the most suitable values for these parameters are often difficult to determine, as they vary with current traffic conditions. Thus, for optimum performance, the parameter values must be fine-tuned. This research presents a new method of fine tuning the FLC parameters using Particle Swarm Optimization (PSO). PSO attempts to optimize several important parameters of the FLC. The objective function of the optimization model incorporates the METANET macroscopic traffic flow model to minimize delay time, subject to the constraints of reasonable ranges of ramp metering rates and FLC parameters. To further improve the performance, a short-term traffic forecasting module using a discrete Kalman filter was incorporated to predict the downstream freeway mainline occupancy. This helps to detect the presence of downstream bottlenecks. The CORSIM microscopic simulation model was selected as the platform to evaluate the performance of the proposed PSO tuning strategy. The ramp-metering algorithm incorporating the tuning strategy was implemented using CORSIM's run-time extension (RTE) and was tested on the aforementioned I-95 corridor. The performance of the FLC with PSO tuning was compared with the performance of the existing FLC without PSO tuning. The results show that the FLC with PSO tuning outperforms the existing FL metering, fixed-time metering, and existing conditions without metering in terms of total travel time savings, average speed, and system-wide throughput.
Resumo:
Bus stops are key links in the journeys of transit patrons with disabilities. Inaccessible bus stops prevent people with disabilities from using fixed-route bus services, thus limiting their mobility. The Americans with Disabilities Act (ADA) of 1990 prescribes the minimum requirements for bus stop accessibility by riders with disabilities. Due to limited budgets, transit agencies can only select a limited number of bus stop locations for ADA improvements annually. These locations should preferably be selected such that they maximize the overall benefits to patrons with disabilities. In addition, transit agencies may also choose to implement the universal design paradigm, which involves higher design standards than current ADA requirements and can provide amenities that are useful for all riders, like shelters and lighting. Many factors can affect the decision to improve a bus stop, including rider-based aspects like the number of riders with disabilities, total ridership, customer complaints, accidents, deployment costs, as well as locational aspects like the location of employment centers, schools, shopping areas, and so on. These interlacing factors make it difficult to identify optimum improvement locations without the aid of an optimization model. This dissertation proposes two integer programming models to help identify a priority list of bus stops for accessibility improvements. The first is a binary integer programming model designed to identify bus stops that need improvements to meet the minimum ADA requirements. The second involves a multi-objective nonlinear mixed integer programming model that attempts to achieve an optimal compromise among the two accessibility design standards. Geographic Information System (GIS) techniques were used extensively to both prepare the model input and examine the model output. An analytic hierarchy process (AHP) was applied to combine all of the factors affecting the benefits to patrons with disabilities. An extensive sensitivity analysis was performed to assess the reasonableness of the model outputs in response to changes in model constraints. Based on a case study using data from Broward County Transit (BCT) in Florida, the models were found to produce a list of bus stops that upon close examination were determined to be highly logical. Compared to traditional approaches using staff experience, requests from elected officials, customer complaints, etc., these optimization models offer a more objective and efficient platform on which to make bus stop improvement suggestions.
Resumo:
A wireless mesh network is a mesh network implemented over a wireless network system such as wireless LANs. Wireless Mesh Networks(WMNs) are promising for numerous applications such as broadband home networking, enterprise networking, transportation systems, health and medical systems, security surveillance systems, etc. Therefore, it has received considerable attention from both industrial and academic researchers. This dissertation explores schemes for resource management and optimization in WMNs by means of network routing and network coding.^ In this dissertation, we propose three optimization schemes. (1) First, a triple-tier optimization scheme is proposed for load balancing objective. The first tier mechanism achieves long-term routing optimization, and the second tier mechanism, using the optimization results obtained from the first tier mechanism, performs the short-term adaptation to deal with the impact of dynamic channel conditions. A greedy sub-channel allocation algorithm is developed as the third tier optimization scheme to further reduce the congestion level in the network. We conduct thorough theoretical analysis to show the correctness of our design and give the properties of our scheme. (2) Then, a Relay-Aided Network Coding scheme called RANC is proposed to improve the performance gain of network coding by exploiting the physical layer multi-rate capability in WMNs. We conduct rigorous analysis to find the design principles and study the tradeoff in the performance gain of RANC. Based on the analytical results, we provide a practical solution by decomposing the original design problem into two sub-problems, flow partition problem and scheduling problem. (3) Lastly, a joint optimization scheme of the routing in the network layer and network coding-aware scheduling in the MAC layer is introduced. We formulate the network optimization problem and exploit the structure of the problem via dual decomposition. We find that the original problem is composed of two problems, routing problem in the network layer and scheduling problem in the MAC layer. These two sub-problems are coupled through the link capacities. We solve the routing problem by two different adaptive routing algorithms. We then provide a distributed coding-aware scheduling algorithm. According to corresponding experiment results, the proposed schemes can significantly improve network performance.^
Resumo:
Modern data centers host hundreds of thousands of servers to achieve economies of scale. Such a huge number of servers create challenges for the data center network (DCN) to provide proportionally large bandwidth. In addition, the deployment of virtual machines (VMs) in data centers raises the requirements for efficient resource allocation and find-grained resource sharing. Further, the large number of servers and switches in the data center consume significant amounts of energy. Even though servers become more energy efficient with various energy saving techniques, DCN still accounts for 20% to 50% of the energy consumed by the entire data center. The objective of this dissertation is to enhance DCN performance as well as its energy efficiency by conducting optimizations on both host and network sides. First, as the DCN demands huge bisection bandwidth to interconnect all the servers, we propose a parallel packet switch (PPS) architecture that directly processes variable length packets without segmentation-and-reassembly (SAR). The proposed PPS achieves large bandwidth by combining switching capacities of multiple fabrics, and it further improves the switch throughput by avoiding padding bits in SAR. Second, since certain resource demands of the VM are bursty and demonstrate stochastic nature, to satisfy both deterministic and stochastic demands in VM placement, we propose the Max-Min Multidimensional Stochastic Bin Packing (M3SBP) algorithm. M3SBP calculates an equivalent deterministic value for the stochastic demands, and maximizes the minimum resource utilization ratio of each server. Third, to provide necessary traffic isolation for VMs that share the same physical network adapter, we propose the Flow-level Bandwidth Provisioning (FBP) algorithm. By reducing the flow scheduling problem to multiple stages of packet queuing problems, FBP guarantees the provisioned bandwidth and delay performance for each flow. Finally, while DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates fluctuating patterns, we propose a joint host-network optimization scheme to enhance the energy efficiency of DCNs during off-peak traffic hours. The proposed scheme utilizes a unified representation method that converts the VM placement problem to a routing problem and employs depth-first and best-fit search to find efficient paths for flows.
Design optimization of modern machine drive systems for maximum fault tolerant and optimal operation
Resumo:
Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. ^ A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. ^ The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. ^ The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. ^ To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.^
Resumo:
The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.
Resumo:
The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. ^ For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver.^ The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. ^ The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.^
Resumo:
Toll plazas have several toll payment types such as manual, automatic coin machines, electronic and mixed lanes. In places with high traffic flow, the presence of toll plaza causes a lot of traffic congestion; this creates a bottleneck for the traffic flow, unless the correct mix of payment types is in operation. The objective of this research is to determine the optimal lane configuration for the mix of the methods of payment so that the waiting time in the queue at the toll plaza is minimized. A queuing model representing the toll plaza system and a nonlinear integer program have been developed to determine the optimal mix. The numerical results show that the waiting time can be decreased at the toll plaza by changing the lane configuration. For the case study developed an improvement in the waiting time as high as 96.37 percent was noticed during the morning peak hour.
Resumo:
Construction projects are complex endeavors that require the involvement of different professional disciplines in order to meet various project objectives that are often conflicting. The level of complexity and the multi-objective nature of construction projects lend themselves to collaborative design and construction such as integrated project delivery (IPD), in which relevant disciplines work together during project conception, design and construction. Traditionally, the main objectives of construction projects have been to build in the least amount of time with the lowest cost possible, thus the inherent and well-established relationship between cost and time has been the focus of many studies. The importance of being able to effectively model relationships among multiple objectives in building construction has been emphasized in a wide range of research. In general, the trade-off relationship between time and cost is well understood and there is ample research on the subject. However, despite sustainable building designs, relationships between time and environmental impact, as well as cost and environmental impact, have not been fully investigated. The objectives of this research were mainly to analyze and identify relationships of time, cost, and environmental impact, in terms of CO2 emissions, at different levels of a building: material level, component level, and building level, at the pre-use phase, including manufacturing and construction, and the relationships of life cycle cost and life cycle CO2 emissions at the usage phase. Additionally, this research aimed to develop a robust simulation-based multi-objective decision-support tool, called SimulEICon, which took construction data uncertainty into account, and was capable of incorporating life cycle assessment information to the decision-making process. The findings of this research supported the trade-off relationship between time and cost at different building levels. Moreover, the time and CO2 emissions relationship presented trade-off behavior at the pre-use phase. The results of the relationship between cost and CO2 emissions were interestingly proportional at the pre-use phase. The same pattern continually presented after the construction to the usage phase. Understanding the relationships between those objectives is a key in successfully planning and designing environmentally sustainable construction projects.
Resumo:
The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver. The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.
Resumo:
One of several techniques applied to production processes oil is the artificial lift, using equipment in order to reduce the bottom hole pressure, providing a pressure differential, resulting in a flow increase. The choice of the artificial lift method depends on a detailed analysis of the some factors, such as initial costs of installation, maintenance, and the existing conditions in the producing field. The Electrical Submersible Pumping method (ESP) appears to be quite efficient when the objective is to produce high liquid flow rates in both onshore and offshore environments, in adverse conditions of temperature and in the presence of viscous fluids. By definition, ESP is a method of artificial lift in which a subsurface electric motor transforms electrical into mechanical energy to trigger a centrifugal pump of multiple stages, composed of a rotating impeller (rotor) and a stationary diffuser (stator). The pump converts the mechanical energy of the engine into kinetic energy in the form of velocity, which pushes the fluid to the surface. The objective of this work is to implement the optimization method of the flexible polyhedron, known as Modified Simplex Method (MSM) applied to the study of the influence of the modification of the input and output parameters of the centrifugal pump impeller in the channel of a system ESP. In the use of the optimization method by changing the angular parameters of the pump, the resultant data applied to the simulations allowed to obtain optimized values of the Head (lift height), lossless efficiency and the power with differentiated results.