945 resultados para Multiobjective evolutionary algorithms
Resumo:
Letter to the Editor on Wang M, Wang Q, Wang Z, Zhang X, Pan Y. The molecular evolutionary patterns of the insulin/FOXO signaling pathway
Resumo:
BACKGROUND: DNA sequence polymorphisms analysis can provide valuable information on the evolutionary forces shaping nucleotide variation, and provides an insight into the functional significance of genomic regions. The recent ongoing genome projects will radically improve our capabilities to detect specific genomic regions shaped by natural selection. Current available methods and software, however, are unsatisfactory for such genome-wide analysis. RESULTS: We have developed methods for the analysis of DNA sequence polymorphisms at the genome-wide scale. These methods, which have been tested on a coalescent-simulated and actual data files from mouse and human, have been implemented in the VariScan software package version 2.0. Additionally, we have also incorporated a graphical-user interface. The main features of this software are: i) exhaustive population-genetic analyses including those based on the coalescent theory; ii) analysis adapted to the shallow data generated by the high-throughput genome projects; iii) use of genome annotations to conduct a comprehensive analyses separately for different functional regions; iv) identification of relevant genomic regions by the sliding-window and wavelet-multiresolution approaches; v) visualization of the results integrated with current genome annotations in commonly available genome browsers. CONCLUSION: VariScan is a powerful and flexible suite of software for the analysis of DNA polymorphisms. The current version implements new algorithms, methods, and capabilities, providing an important tool for an exhaustive exploratory analysis of genome-wide DNA polymorphism data.
Resumo:
Inference of Markov random field images segmentation models is usually performed using iterative methods which adapt the well-known expectation-maximization (EM) algorithm for independent mixture models. However, some of these adaptations are ad hoc and may turn out numerically unstable. In this paper, we review three EM-like variants for Markov random field segmentation and compare their convergence properties both at the theoretical and practical levels. We specifically advocate a numerical scheme involving asynchronous voxel updating, for which general convergence results can be established. Our experiments on brain tissue classification in magnetic resonance images provide evidence that this algorithm may achieve significantly faster convergence than its competitors while yielding at least as good segmentation results.
Resumo:
Networks are evolving toward a ubiquitous model in which heterogeneousdevices are interconnected. Cryptographic algorithms are required for developing securitysolutions that protect network activity. However, the computational and energy limitationsof network devices jeopardize the actual implementation of such mechanisms. In thispaper, we perform a wide analysis on the expenses of launching symmetric and asymmetriccryptographic algorithms, hash chain functions, elliptic curves cryptography and pairingbased cryptography on personal agendas, and compare them with the costs of basic operatingsystem functions. Results show that although cryptographic power costs are high and suchoperations shall be restricted in time, they are not the main limiting factor of the autonomyof a device.
Resumo:
The paper presents some contemporary approaches to spatial environmental data analysis. The main topics are concentrated on the decision-oriented problems of environmental spatial data mining and modeling: valorization and representativity of data with the help of exploratory data analysis, spatial predictions, probabilistic and risk mapping, development and application of conditional stochastic simulation models. The innovative part of the paper presents integrated/hybrid model-machine learning (ML) residuals sequential simulations-MLRSS. The models are based on multilayer perceptron and support vector regression ML algorithms used for modeling long-range spatial trends and sequential simulations of the residuals. NIL algorithms deliver non-linear solution for the spatial non-stationary problems, which are difficult for geostatistical approach. Geostatistical tools (variography) are used to characterize performance of ML algorithms, by analyzing quality and quantity of the spatially structured information extracted from data with ML algorithms. Sequential simulations provide efficient assessment of uncertainty and spatial variability. Case study from the Chernobyl fallouts illustrates the performance of the proposed model. It is shown that probability mapping, provided by the combination of ML data driven and geostatistical model based approaches, can be efficiently used in decision-making process. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a Bayesian approach to the design of transmit prefiltering matrices in closed-loop schemes robust to channel estimation errors. The algorithms are derived for a multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system. Two different optimizationcriteria are analyzed: the minimization of the mean square error and the minimization of the bit error rate. In both cases, the transmitter design is based on the singular value decomposition (SVD) of the conditional mean of the channel response, given the channel estimate. The performance of the proposed algorithms is analyzed,and their relationship with existing algorithms is indicated. As withother previously proposed solutions, the minimum bit error rate algorithmconverges to the open-loop transmission scheme for very poor CSI estimates.
Resumo:
Many engineering problems that can be formulatedas constrained optimization problems result in solutionsgiven by a waterfilling structure; the classical example is thecapacity-achieving solution for a frequency-selective channel.For simple waterfilling solutions with a single waterlevel and asingle constraint (typically, a power constraint), some algorithmshave been proposed in the literature to compute the solutionsnumerically. However, some other optimization problems result insignificantly more complicated waterfilling solutions that includemultiple waterlevels and multiple constraints. For such cases, itmay still be possible to obtain practical algorithms to evaluate thesolutions numerically but only after a painstaking inspection ofthe specific waterfilling structure. In addition, a unified view ofthe different types of waterfilling solutions and the correspondingpractical algorithms is missing.The purpose of this paper is twofold. On the one hand, itoverviews the waterfilling results existing in the literature from aunified viewpoint. On the other hand, it bridges the gap betweena wide family of waterfilling solutions and their efficient implementationin practice; to be more precise, it provides a practicalalgorithm to evaluate numerically a general waterfilling solution,which includes the currently existing waterfilling solutions andothers that may possibly appear in future problems.
Resumo:
In this thesis, different genetic tools are used to investigate both natural variation and speciation in the Ficedula flycatcher system: pied (Ficedula hypoleuca) and collared (F. albicollis) flycatchers. The molecular evolution of a gene involved in postnatal body growth, GH, has shown high degree of conservation at the mature protein between birds and mammals, whereas the variation observed in its signal peptide seems to be adaptive in pied flycatcher (I & II). Speciation is the process by which reproductive barriers to gene flow evolve between populations, and understanding the mechanisms involved in pre- and post-zygotic isolation have been investigated in Ficedula flycatchers. The Z chromosome have been suggested to be the hotspot for genes involved in speciation, thus sequencing of 13 Z-linked coding genes from the two species in allopatry and sympatry have been conducted (III). Surprisingly, the majority of Z-linked genes seemed to be highly conserved, suggesting instead a potential involvement of regulatory regions. Previous studies have shown that genes involved in hybrid fitness, female preferences and male plumage colouration are sex-linked. Hence, three pigmentation genes have been investigated: MC1R, AGRP, and TYRP1. Of these three genes, TYRP1 was identified as a strong candidate to be associated with black-brown plumage variation in sympatric populations, and hence is a strong candidate for a gene contributing to pre-zygotic isolation (IV). In sympatric areas, where pied and collared flycatchers have overlapping breeding areas, hybridization sometimes occurs leading to the production of unfit hybrids. By using a proteomic approach a novel expression pattern in hybrids was revealed compared to the parental species (V) and differentially expressed proteins subsequently identified by sequence similarity (VI). In conclusion, the Z chromosome appears to play an important role in flycatcher speciation, but probably not at the coding level. In addition the novel expression patterns might give new insights into the maladaptive hybrids.
Resumo:
In this paper, two probabilistic adaptive algorithmsfor jointly detecting active users in a DS-CDMA system arereported. The first one, which is based on the theory of hiddenMarkov models (HMM’s) and the Baum–Wech (BW) algorithm,is proposed within the CDMA scenario and compared withthe second one, which is a previously developed Viterbi-basedalgorithm. Both techniques are completely blind in the sense thatno knowledge of the signatures, channel state information, ortraining sequences is required for any user. Once convergencehas been achieved, an estimate of the signature of each userconvolved with its physical channel response (CR) and estimateddata sequences are provided. This CR estimate can be used toswitch to any decision-directed (DD) adaptation scheme. Performanceof the algorithms is verified via simulations as well as onexperimental data obtained in an underwater acoustics (UWA)environment. In both cases, performance is found to be highlysatisfactory, showing the near–far resistance of the analyzed algorithms.
Resumo:
To evaluate the impact of noninvasive ventilation (NIV) algorithms available on intensive care unit ventilators on the incidence of patient-ventilator asynchrony in patients receiving NIV for acute respiratory failure. Prospective multicenter randomized cross-over study. Intensive care units in three university hospitals. Patients consecutively admitted to the ICU and treated by NIV with an ICU ventilator were included. Airway pressure, flow and surface diaphragmatic electromyography were recorded continuously during two 30-min periods, with the NIV (NIV+) or without the NIV algorithm (NIV0). Asynchrony events, the asynchrony index (AI) and a specific asynchrony index influenced by leaks (AIleaks) were determined from tracing analysis. Sixty-five patients were included. With and without the NIV algorithm, respectively, auto-triggering was present in 14 (22%) and 10 (15%) patients, ineffective breaths in 15 (23%) and 5 (8%) (p = 0.004), late cycling in 11 (17%) and 5 (8%) (p = 0.003), premature cycling in 22 (34%) and 21 (32%), and double triggering in 3 (5%) and 6 (9%). The mean number of asynchronies influenced by leaks was significantly reduced by the NIV algorithm (p < 0.05). A significant correlation was found between the magnitude of leaks and AIleaks when the NIV algorithm was not activated (p = 0.03). The global AI remained unchanged, mainly because on some ventilators with the NIV algorithm premature cycling occurs. In acute respiratory failure, NIV algorithms provided by ICU ventilators can reduce the incidence of asynchronies because of leaks, thus confirming bench test results, but some of these algorithms can generate premature cycling.
Resumo:
Phylogenetic trees representing the evolutionary relationships of homologous genes are the entry point for many evolutionary analyses. For instance, the use of a phylogenetic tree can aid in the inference of orthology and paralogy relationships, and in the detection of relevant evolutionary events such as gene family expansions and contractions, horizontal gene transfer, recombination or incomplete lineage sorting. Similarly, given the plurality of evolutionary histories among genes encoded in a given genome, there is a need for the combined analysis of genome-wide collections of phylogenetic trees (phylomes). Here, we introduce a new release of PhylomeDB (http://phylomedb.org), a public repository of phylomes. Currently, PhylomeDB hosts 120 public phylomes, comprising >1.5 million maximum likelihood trees and multiple sequence alignments. In the current release, phylogenetic trees are annotated with taxonomic, protein-domain arrangement, functional and evolutionary information. PhylomeDB is also a major source for phylogeny-based predictions of orthology and paralogy, covering >10 million proteins across 1059 sequenced species. Here we describe newly implemented PhylomeDB features, and discuss a benchmark of the orthology predictions provided by the database, the impact of proteome updates and the use of the phylome approach in the analysis of newly sequenced genomes and transcriptomes.
Resumo:
Detecting the action of selection in natural populations can be achieved using the QST-FST comparison that relies on the estimation of FST with neutral markers, and QST using quantitative traits potentially under selection. QST higher than FST suggests the action of directional selection and thus potential local adaptation. In this article, we apply the QST-FST comparison to four populations of the hermaphroditic freshwater snail Radix balthica located in a floodplain habitat. In contrast to most studies published so far, we did not detect evidence of directional selection for local optima for any of the traits we measured: QST calculated using three different methods was never higher than FST. A strong inbreeding depression was also detected, indicating that outcrossing is probably predominant over selfing in the studied populations. Our results suggest that in this floodplain habitat, local adaptation of R. balthica populations may be hindered by genetic drift, and possibly altered by uneven gene flow linked to flood frequency.
Resumo:
An alternative relation to Pareto-dominance relation is proposed. The new relation is based on ranking a set of solutions according to each separate objective and an aggregation function to calculate a scalar fitness value for each solution. The relation is called as ranking-dominance and it tries to tackle the curse of dimensionality commonly observedin evolutionary multi-objective optimization. Ranking-dominance can beused to sort a set of solutions even for a large number of objectives when Pareto-dominance relation cannot distinguish solutions from one another anymore. This permits search to advance even with a large number of objectives. It is also shown that ranking-dominance does not violate Pareto-dominance. Results indicate that selection based on ranking-dominance is able to advance search towards the Pareto-front in some cases, where selection based on Pareto-dominance stagnates. However, in some cases it is also possible that search does not proceed into direction of Pareto-front because the ranking-dominance relation permits deterioration of individual objectives. Results also show that when the number of objectives increases, selection based on just Pareto-dominance without diversity maintenance is able to advance search better than with diversity maintenance. Therefore, diversity maintenance is connive at the curse of dimensionality.
Resumo:
The parameter setting of a differential evolution algorithm must meet several requirements: efficiency, effectiveness, and reliability. Problems vary. The solution of a particular problem can be represented in different ways. An algorithm most efficient in dealing with a particular representation may be less efficient in dealing with other representations. The development of differential evolution-based methods contributes substantially to research on evolutionary computing and global optimization in general. The objective of this study is to investigatethe differential evolution algorithm, the intelligent adjustment of its controlparameters, and its application. In the thesis, the differential evolution algorithm is first examined using different parameter settings and test functions. Fuzzy control is then employed to make control parameters adaptive based on an optimization process and expert knowledge. The developed algorithms are applied to training radial basis function networks for function approximation with possible variables including centers, widths, and weights of basis functions and both having control parameters kept fixed and adjusted by fuzzy controller. After the influence of control variables on the performance of the differential evolution algorithm was explored, an adaptive version of the differential evolution algorithm was developed and the differential evolution-based radial basis function network training approaches were proposed. Experimental results showed that the performance of the differential evolution algorithm is sensitive to parameter setting, and the best setting was found to be problem dependent. The fuzzy adaptive differential evolution algorithm releases the user load of parameter setting and performs better than those using all fixedparameters. Differential evolution-based approaches are effective for training Gaussian radial basis function networks.