974 resultados para Multiobjective Evolutionary Algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Natural selection and genetic drift are major forces responsible for temporal genetic changes in populations. Furthermore, these evolutionary forces may interact with each other. Here we study the impact of an ongoing adaptive process at the molecular genetic level by analyzing the temporal genetic changes throughout 40 generations of adaptation to a common laboratory environment. Specifically, genetic variability, population differentiation and demographic structure were compared in two replicated groups of Drosophila subobscura populations recently sampled from different wild sources. Results: We found evidence for a decline in genetic variability through time, along with an increase in genetic differentiation between all populations studied. The observed decline in genetic variability was higher during the first 14 generations of laboratory adaptation. The two groups of replicated populations showed overall similarity in variability patterns. Our results also revealed changing demographic structure of the populations during laboratory evolution, with lower effective population sizes in the early phase of the adaptive process. One of the ten microsatellites analyzed showed a clearly distinct temporal pattern of allele frequency change, suggesting the occurrence of positive selection affecting the region around that particular locus. Conclusion: Genetic drift was responsible for most of the divergence and loss of variability between and within replicates, with most changes occurring during the first generations of laboratory adaptation. We also found evidence suggesting a selective sweep, despite the low number of molecular markers analyzed. Overall, there was a similarity of evolutionary dynamics at the molecular level in our laboratory populations, despite distinct genetic backgrounds and some differences in phenotypic evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The degree of metal binding specificity in metalloproteins such as metallothioneins (MTs) can be crucial for their functional accuracy. Unlike most other animal species, pulmonate molluscs possess homometallic MT isoforms loaded with Cu+ or Cd2+. They have, so far, been obtained as native metal-MT complexes from snail tissues, where they are involved in the metabolism of the metal ion species bound to the respective isoform. However, it has not as yet been discerned if their specific metal occupation is the result of a rigid control of metal availability, or isoform expression programming in the hosting tissues or of structural differences of the respective peptides determining the coordinative options for the different metal ions. In this study, the Roman snail (Helix pomatia) Cu-loaded and Cd-loaded isoforms (HpCuMT and HpCdMT) were used as model molecules in order t o elucidate the biochemical and evolutionary mechanisms permitting pulmonate MTs to achieve specificity for their cognate metal ion. Results: HpCuMT and HpCdMT were recombinantly synthesized in the presence of Cd2+, Zn2+ or Cu2+ and corresponding metal complexes analysed by electrospray mass spectrometry and circular dichroism (CD) and ultra violet-visible (UV-Vis) spectrophotometry. Both MT isoforms were only able to form unique, homometallic and stable complexes (Cd6-HpCdMT and Cu12-HpCuMT) with their cognate metal ions. Yeast complementation assays demonstrated that the two isoforms assumed metal-specific functions, in agreement with their binding preferences, in heterologous eukaryotic environments. In the snail organism, the functional metal specificity of HpCdMT and HpCuMT was contributed by metal-specific transcription programming and cell-specific expression. Sequence elucidation and phylogenetic analysis of MT isoforms from a number of snail species revealed that they possess an unspecific and two metal-specific MT isoforms, whose metal specificity was achieved exclusively by evolutionary modulation of non-cysteine amino acid positions. Conclusion: The Roman snail HpCdMT and HpCuMT isoforms can thus be regarded as prototypes of isoform families that evolved genuine metal-specificity within pulmonate molluscs. Diversification into these isoforms may have been initiated by gene duplication, followed by speciation and selection towards opposite needs for protecting copper-dominated metabolic pathways from nonessential cadmium. The mechanisms enabling these proteins to be metal-specific could also be relevant for other metalloproteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemoreception is a biological process essential for the survival of animals, as it allows the recognition of important volatile cues for the detection of food, egg-laying substrates, mates or predators, among other purposes. Furthermore, its role in pheromone detection may contribute to evolutionary processes such as reproductive isolation and speciation. This key role in several vital biological processes makes chemoreception a particularly interesting system for studying the role of natural selection in molecular adaptation. Two major gene families are involved in the perireceptor events of the chemosensory system: the odorant-binding protein (OBP) and chemosensory protein (CSP) families. Here, we have conducted an exhaustive comparative genomic analysis of these gene families in twenty Arthropoda species. We show that the evolution of the OBP and CSP gene families is highly dynamic, with a high number of gains and losses of genes, pseudogenes and independent origins of subfamilies. Taken together, our data clearly support the birth-and-death model for the evolution of these gene families with an overall high gene-turnover rate. Moreover, we show that the genome organization of the two families is significantly more clustered than expected by chance and, more important, that this pattern appears to be actively maintained across the Drosophila phylogeny. Finally, we suggest the homologous nature of the OBP and CSP gene families, dating back their MRCA (most recent common ancestor) to 380¿420 Mya, and we propose a scenario for the origin and diversification of these families.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenoviruses of primates include human (HAdV) and simian (SAdV) isolates classified into 8 species (Human Adenovirus A to G, and Simian Adenovirus A). In this study, a novel adenovirus was isolated from a colony of cynomolgus macaques (Macaca fascicularis) and subcultured in VERO cells. Its complete genome was purified and a region encompassing the hexon gene, the protease gene, the DNA binding protein (DBP) and the 100 kDa protein was amplified by PCR and sequenced by primer walking. Sequence analysis of these four genes showed that the new isolate had 80% identity to other primate adenoviruses and lacked recombination events. The study of the evolutionary relationships of this new monkey AdV based on the combined sequences of the four genes supported a close relationship to SAdV-3 and SAdV-6, lineages isolated from Rhesus monkeys. The clade formed by these three types is separated from the remaining clades and establishes a novel branch that is related to species HAdV-A, F and G. However, the genetic distance corresponding to the newly isolated monkey AdV considerably differs from these as to belong to a new, not yet established species. Results presented here widen our knowledge on SAdV and represents an important contribution to the understanding of the evolutionary history of primate adenoviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenoviruses of primates include human (HAdV) and simian (SAdV) isolates classified into 8 species (Human Adenovirus A to G, and Simian Adenovirus A). In this study, a novel adenovirus was isolated from a colony of cynomolgus macaques (Macaca fascicularis) and subcultured in VERO cells. Its complete genome was purified and a region encompassing the hexon gene, the protease gene, the DNA binding protein (DBP) and the 100 kDa protein was amplified by PCR and sequenced by primer walking. Sequence analysis of these four genes showed that the new isolate had 80% identity to other primate adenoviruses and lacked recombination events. The study of the evolutionary relationships of this new monkey AdV based on the combined sequences of the four genes supported a close relationship to SAdV-3 and SAdV-6, lineages isolated from Rhesus monkeys. The clade formed by these three types is separated from the remaining clades and establishes a novel branch that is related to species HAdV-A, F and G. However, the genetic distance corresponding to the newly isolated monkey AdV considerably differs from these as to belong to a new, not yet established species. Results presented here widen our knowledge on SAdV and represents an important contribution to the understanding of the evolutionary history of primate adenoviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary goal of this project is to demonstrate the accuracy and utility of a freezing drizzle algorithm that can be implemented on roadway environmental sensing systems (ESSs). The types of problems related to the occurrence of freezing precipitation range from simple traffic delays to major accidents that involve fatalities. Freezing drizzle can also lead to economic impacts in communities with lost work hours, vehicular damage, and downed power lines. There are means for transportation agencies to perform preventive and reactive treatments to roadways, but freezing drizzle can be difficult to forecast accurately or even detect as weather radar and surface observation networks poorly observe these conditions. The detection of freezing precipitation is problematic and requires special instrumentation and analysis. The Federal Aviation Administration (FAA) development of aircraft anti-icing and deicing technologies has led to the development of a freezing drizzle algorithm that utilizes air temperature data and a specialized sensor capable of detecting ice accretion. However, at present, roadway ESSs are not capable of reporting freezing drizzle. This study investigates the use of the methods developed for the FAA and the National Weather Service (NWS) within a roadway environment to detect the occurrence of freezing drizzle using a combination of icing detection equipment and available ESS sensors. The work performed in this study incorporated the algorithm developed initially and further modified for work with the FAA for aircraft icing. The freezing drizzle algorithm developed for the FAA was applied using data from standard roadway ESSs. The work performed in this study lays the foundation for addressing the central question of interest to winter maintenance professionals as to whether it is possible to use roadside freezing precipitation detection (e.g., icing detection) sensors to determine the occurrence of pavement icing during freezing precipitation events and the rates at which this occurs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Division of labor is a complex phenomenon observed throughout nature. Theoretical studies have focused either on its emergence through self-organization mechanisms or on its adaptive consequences. We suggest that the interaction of self-organization, which undoubtedly characterizes division of labor in social insects, and evolution should be further explored. We review the factors empirically shown to influence task choice. In light of these factors, we review the most important self-organization and evolutionary models for division of labor and outline their advantages and limitations. We describe ways to unify evolution and self-organization in the theoretical study of division of labor and recent results in this area. Finally, we discuss some benchmarks and primary challenges of this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In yeast, microtubules are dynamic filaments necessary for spindle and nucleus positioning, as well as for proper chromosome segregation. We identify a function for the yeast gene BER1 (Benomyl REsistant 1) in microtubule stability. BER1 belongs to an evolutionary conserved gene family whose founding member Sensitivity to Red light Reduced is involved in red-light perception and circadian rhythms in Arabidopsis. Here, we present data showing that the ber1Delta mutant is affected in microtubule stability, particularly in presence of microtubule-depolymerising drugs. The pattern of synthetic lethal interactions obtained with the ber1Delta mutant suggests that Ber1 may function in N-terminal protein acetylation. Our work thus suggests that microtubule stability might be regulated through this post-translational modification on yet-to-be determined proteins

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sacoglossan sea slugs (Mollusca: Opisthobranchia) are one of the few groups of specialist herbivores in the marine environment. Sacoglossans feed suctorially on the cell sap of macroalgae, from which they 'steal' chloroplasts (kleptoplasty) and deterrent substances (kleptochemistry), retaining intracellularly both host plastids and chemicals. The ingested chloroplasts continue to photosynthesize for periods ranging from a few hours or days up to 3 months in some species. Shelled, more primitive sacoglossans feed only on the siphonalean green algal genus Caulerpa, and they do not have functional kleptoplasty. The diet of sacoglossans has radiated out from this ancestral food. Among the shell-less Plakobranchidae (=Elysiidae), the more primitive species feed on other siphonales (families Derbesiaceae, Caulerpaceae, Bryopsidaceae and Codiaceae) and fix carbon, while the more 'advanced' species within the Plakobranchidae and Limapontioidae have a more broad dietary range. Most of these 'advanced' species are unable to fix carbon because the chloroplasts of their food algae are mechanically disrupted during ingestion. Mesoherbivores are likely to be eaten if they live on palatable seaweeds, their cryptic coloration and form not always keeping them safe from predators. Sacoglossans prefer to live on and eat chemically defended seaweeds, and they use ingested algal chemicals as deterrents of potential predators. The most ancestral shelled sacoglossans (Oxynoidae) and some Plakobranchidae such as Elysia translucens, Thuridilla hopei and Bosellia mimetica have developed a diet-derived chemical defense mechanism. Oxynoids and Thuridilla hopei are able to biomodify the algal metabolites. However, the Plakobranchidae Elysia timida and E. viridis, together with Limapontioidea species, are characterized by their ability to de novo synthesize polypropionate metabolites. A whole analysis of kleptoplasty and chemical defenses in sacoglossans may offer a better understanding of the ecology and evolution of these specialized opisthobranchs. In this paper we summarize some of the latest findings, related mainly to Mediterranean species, and offer a plausible evolutionary scenario based on the biological and chemical trends we can distinguish in them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

• Grasses rank among the world's most ecologically and economically important plants. Repeated evolution of the C(4) syndrome has made photosynthesis highly efficient in many grasses, inspiring intensive efforts to engineer the pathway into C(3) crops. However, comparative biology has been of limited use to this endeavor because of uncertainty in the number and phylogenetic placement of C(4) origins. • We built the most comprehensive and robust molecular phylogeny for grasses to date, expanding sampling efforts of a previous working group from 62 to 531 taxa, emphasizing the C(4)-rich PACMAD (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae and Danthonioideae) clade. Our final matrix comprises c. 5700 bp and is > 93% complete. • For the first time, we present strong support for relationships among all the major grass lineages. Several new C(4) lineages are identified, and previously inferred origins confirmed. C(3)/C(4) evolutionary transitions have been highly asymmetrical, with 22-24 inferred origins of the C(4) pathway and only one potential reversal. • Our backbone tree clarifies major outstanding systematic questions and highlights C(3) and C(4) sister taxa for comparative studies. Two lineages have emerged as hotbeds of C(4) evolution. Future work in these lineages will be instrumental in understanding the evolution of this complex trait.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les caractéristiques avançades de Delphinium L. subgèn. Delphinium (taxons anuals) son comparades amb les del subgèn. Delphinastrum (DC.) Wang i del subgèn. Oligophyllon Dimitrova (taxons perennes). La morfología floral mostra un intercanvi de funcions entre els petals laterals i els petals superiors i restructura de la inflorescencia de molts taxons anuals afavoreix un augment de les taxes de geitonogàmia-autogàmia. L'evolució dels cariotips és basada en una disminució de la longitud total dels cromosomes i en un increment del grau d'asimetria; el nombre cromosómic roman constant per a totes les especies anuals (2n = 16). Leficàcia de la dispersió de les especies anuals és mes gran que no pas la de les especies perennes, per causa d'un increment en la producció de granes i per l'augment de la flotabilitat, tant a l'aire com a l'aigua. D'altres caractéristiques adaptatives avançades son l'adquisició de noves defenses químiques i l'aparició d'un nou tipus embriogènic. Els nínxols ecologies del subgèn. Delphinium corresponen a habitats oberts i alterats, en comparado amb els habitats estables i relativament tancats dels subgéneros Delphinastrum i Oligophyllon. Es presenta una hipótesi global de les tendencies évolutives observades en anuals vs. perennes en connexió amb consideracions biogeogràfiques, així corn un resum taxonomic final.