798 resultados para Multi agent systems


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimization techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper details some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study based on real data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adequate decision support tools are required by electricity market players operating in a liberalized environment, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services (AS) represent a good negotiation opportunity that must be considered by market players. Based on the ancillary services forecasting, market participants can use strategic bidding for day-ahead ancillary services markets. For this reason, ancillary services market simulation is being included in MASCEM, a multi-agent based electricity market simulator that can be used by market players to test and enhance their bidding strategies. The paper presents the methodology used to undertake ancillary services forecasting, based on an Artificial Neural Network (ANN) approach. ANNs are used to day-ahead prediction of non-spinning reserve (NS), regulation-up (RU), and regulation down (RD). Spinning reserve (SR) is mentioned as past work for comparative analysis. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we present a Self-Optimizing module, inspired on Autonomic Computing, acquiring a scheduling system with the ability to automatically select a Meta-heuristic to use in the optimization process, so as its parameterization. Case-based Reasoning was used so the system may be able of learning from the acquired experience, in the resolution of similar problems. From the obtained results we conclude about the benefit of its use.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the problem of Biological Inspired Optimization Techniques (BIT) parameterization, considering the importance of this issue in the design of BIT especially when considering real world situations, subject to external perturbations. A learning module with the objective to permit a Multi-Agent Scheduling System to automatically select a Meta-heuristic and its parameterization to use in the optimization process is proposed. For the learning process, Casebased Reasoning was used, allowing the system to learn from experience, in the resolution of similar problems. Analyzing the obtained results we conclude about the advantages of its use.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Group decision making plays an important role in today’s organisations. The impact of decision making is so high and complex, that rarely the decision making process is made individually. In Group Decision Argumentation, there is a set of participants, with different profiles and expertise levels, that exchange ideas or engage in a process of argumentation and counter-argumentation, negotiate, cooperate, collaborate or even discuss techniques and/or methodologies for problem solving. In this paper, it is proposed a Multi-Agent simulator for the behaviour representation of group members in a decision making process. Agents behave depending on rational and emotional intelligence and use persuasive argumentation to convince and make alternative choices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Personalised video can be achieved by inserting objects into a video play-out according to the viewer's profile. Content which has been authored and produced for general broadcast can take on additional commercial service features when personalised either for individual viewers or for groups of viewers participating in entertainment, training, gaming or informational activities. Although several scenarios and use-cases can be envisaged, we are focussed on the application of personalised product placement. Targeted advertising and product placement are currently garnering intense interest in the commercial networked media industries. Personalisation of product placement is a relevant and timely service for next generation online marketing and advertising and for many other revenue generating interactive services. This paper discusses the acquisition and insertion of media objects into a TV video play-out stream where the objects are determined by the profile of the viewer. The technology is based on MPEG-4 standards using object based video and MPEG-7 for metadata. No proprietary technology or protocol is proposed. To trade the objects into the video play-out, a Software-as-a-Service brokerage platform based on intelligent agent technology is adopted. Agencies, libraries and service providers are represented in a commercial negotiation to facilitate the contractual selection and usage of objects to be inserted into the video play-out.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electricity Markets are not only a new reality but an evolving one as the involved players and rules change at a relatively high rate. Multi-agent simulation combined with Artificial Intelligence techniques may result in very helpful sophisticated tools. This paper presents a new methodology for the management of coalitions in electricity markets. This approach is tested using the multi-agent market simulator MASCEM (Multi-Agent Simulator of Competitive Electricity Markets), taking advantage of its ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as coalitions of agents, with the capability of negotiating both in the market and internally, with their members in order to combine and manage their individual specific characteristics and goals, with the strategy and objectives of the VPP itself. A case study using real data from the Iberian Electricity Market is performed to validate and illustrate the proposed approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Consumer-electronics systems are becoming increasingly complex as the number of integrated applications is growing. Some of these applications have real-time requirements, while other non-real-time applications only require good average performance. For cost-efficient design, contemporary platforms feature an increasing number of cores that share resources, such as memories and interconnects. However, resource sharing causes contention that must be resolved by a resource arbiter, such as Time-Division Multiplexing. A key challenge is to configure this arbiter to satisfy the bandwidth and latency requirements of the real-time applications, while maximizing the slack capacity to improve performance of their non-real-time counterparts. As this configuration problem is NP-hard, a sophisticated automated configuration method is required to avoid negatively impacting design time. The main contributions of this article are: 1) An optimal approach that takes an existing integer linear programming (ILP) model addressing the problem and wraps it in a branch-and-price framework to improve scalability. 2) A faster heuristic algorithm that typically provides near-optimal solutions. 3) An experimental evaluation that quantitatively compares the branch-and-price approach to the previously formulated ILP model and the proposed heuristic. 4) A case study of an HD video and graphics processing system that demonstrates the practical applicability of the approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Robocup Rescue Simulation System (RCRSS) is a dynamic system of multi-agent interaction, simulating a large-scale urban disaster scenario. Teams of rescue agents are charged with the tasks of minimizing civilian casualties and infrastructure damage while competing against limitations on time, communication, and awareness. This thesis provides the first known attempt of applying Genetic Programming (GP) to the development of behaviours necessary to perform well in the RCRSS. Specifically, this thesis studies the suitability of GP to evolve the operational behaviours required of each type of rescue agent in the RCRSS. The system developed is evaluated in terms of the consistency with which expected solutions are the target of convergence as well as by comparison to previous competition results. The results indicate that GP is capable of converging to some forms of expected behaviour, but that additional evolution in strategizing behaviours must be performed in order to become competitive. An enhancement to the standard GP algorithm is proposed which is shown to simplify the initial search space allowing evolution to occur much quicker. In addition, two forms of population are employed and compared in terms of their apparent effects on the evolution of control structures for intelligent rescue agents. The first is a single population in which each individual is comprised of three distinct trees for the respective control of three types of agents, the second is a set of three co-evolving subpopulations one for each type of agent. Multiple populations of cooperating individuals appear to achieve higher proficiencies in training, but testing on unseen instances raises the issue of overfitting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Le module de l'apprenant est l'une des composantes les plus importantes d’un Système Tutoriel Intelligent (STI). L'extension du modèle de l'apprenant n'a pas cessé de progresser. Malgré la définition d’un profil cognitif et l’intégration d’un profil émotionnel, le module de l’apprenant demeure non exhaustif. Plusieurs senseurs physiologiques sont utilisés pour raffiner la reconnaissance des états cognitif et émotionnel de l’apprenant mais l’emploi simultané de tous ces senseurs l’encombre. De plus, ils ne sont pas toujours adaptés aux apprenants dont les capacités sont réduites. Par ailleurs, la plupart des stratégies pédagogiques exécutées par le module du tuteur ne sont pas conçues à la base d’une collecte dynamique de données en temps réel, cela diminue donc de leur efficacité. L’objectif de notre recherche est d’explorer l’activité électrique cérébrale et de l’utiliser comme un nouveau canal de communication entre le STI et l’apprenant. Pour ce faire nous proposons de concevoir, d’implémenter et d’évaluer le système multi agents NORA. Grâce aux agents de NORA, il est possible d’interpréter et d’influencer l’activité électrique cérébrale de l’apprenant pour un meilleur apprentissage. Ainsi, NORA enrichit le module apprenant d’un profile cérébral et le module tuteur de quelques nouvelles stratégies neuropédagogiques efficaces. L’intégration de NORA à un STI donne naissance à une nouvelle génération de systèmes tutoriels : les STI Cérébro-sensibles (ou STICS) destinés à aider un plus grand nombre d’apprenants à interagir avec l’ordinateur pour apprendre à gérer leurs émotions, maintenir la concentration et maximiser les conditions favorable à l’apprentissage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal