901 resultados para Molecular Dynamic Simulations
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The properties of films of carboxymethyl cellulose, CMC, of different degree of substitution, DS, have been examined by the use of perichromic indicators (probes). The film properties that have been determined are: empirical polarity, E-T(33); "acidity", alpha; "basicity", beta; and dipolarity/polarizability, pi*. This has been achieved by employing the following perichromic probes: 4-nitroaniline, 4-nitroanisole, 4-nitro-N,N-dimethylaniline, and 2,6-dichloro-4-(2,4,6-triphenyl-pyridinium-1-yl)phenolate, WB. The correlations between both E-T(33)- or pi* and DS were found to be linear; that between beta and DS is a second order polynomial; no obvious correlation was found between alpha and DS. The polarities of CMC films are in the range of those of butyl alcohols. As models for CMC, we have employed cellulose plus CMC of high DS; oxidized cellulose with degree of oxidation = 0.5; sodium glucuronate. The former model behaved akin to CMC, but the plots of the perichromic properties versus DS showed different slopes/intercepts. FTIR data and molecular dynamics simulations on the solvation of WB have shown that this difference can be traced to more efficient hydrogen bonding between the film of the model and the probe. This affects the intra-molecular charge-transfer energy of the latter, leading to different responses to the variation of DS. Based on the excellent linear correlation between E-T(33) and DS, for CMC from different origins, we suggest that perichromism is a simple, accurate, and expedient alternative for the determination of DS of the biopolymer derivative.
Resumo:
Background: This paper addresses the prediction of the free energy of binding of a drug candidate with enzyme InhA associated with Mycobacterium tuberculosis. This problem is found within rational drug design, where interactions between drug candidates and target proteins are verified through molecular docking simulations. In this application, it is important not only to correctly predict the free energy of binding, but also to provide a comprehensible model that could be validated by a domain specialist. Decision-tree induction algorithms have been successfully used in drug-design related applications, specially considering that decision trees are simple to understand, interpret, and validate. There are several decision-tree induction algorithms available for general-use, but each one has a bias that makes it more suitable for a particular data distribution. In this article, we propose and investigate the automatic design of decision-tree induction algorithms tailored to particular drug-enzyme binding data sets. We investigate the performance of our new method for evaluating binding conformations of different drug candidates to InhA, and we analyze our findings with respect to decision tree accuracy, comprehensibility, and biological relevance. Results: The empirical analysis indicates that our method is capable of automatically generating decision-tree induction algorithms that significantly outperform the traditional C4.5 algorithm with respect to both accuracy and comprehensibility. In addition, we provide the biological interpretation of the rules generated by our approach, reinforcing the importance of comprehensible predictive models in this particular bioinformatics application. Conclusions: We conclude that automatically designing a decision-tree algorithm tailored to molecular docking data is a promising alternative for the prediction of the free energy from the binding of a drug candidate with a flexible-receptor.
Resumo:
Hb S-Sao Paulo (SP) [HBB:c.20A > T p.Glu6Val: c.196A > G p.Lys65Glu] is a new double-mutant hemoglobin that was found in heterozygosis in an 18-month-old Brazilian male with moderate anemia. It behaves like Hb S in acid electrophoresis, isoelectric focusing and solubility testing but shows different behavior in alkaline electrophoresis, cation-exchange HPLC and RP-HPLC. The variant is slightly unstable, showed reduced oxygen affinity and also appeared to form polymers more stable than the Hb S. Molecular dynamics simulation suggests that the polymerization is favored by interfacial electrostatic interactions. This provides a plausible explanation for some of the reported experimental observations. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The Dengue has become a global public health threat, with over 100 million infections annually; to date there is no specific vaccine or any antiviral drug. The structures of the envelope (E) proteins of the four known serotype of the dengue virus (DENV) are already known, but there are insufficient molecular details of their structural behavior in solution in the distinct environmental conditions in which the DENVs are submitted, from the digestive tract of the mosquito up to its replication inside the host cell. Such detailed knowledge becomes important because of the multifunctional character of the E protein: it mediates the early events in cell entry, via receptor endocytosis and, as a class II protein, participates determinately in the process of membrane fusion. The proposed infection mechanism asserts that once in the endosome, at low pH, the E homodimers dissociate and insert into the endosomal lipid membrane, after an extensive conformational change, mainly on the relative arrangement of its three domains. In this work we employ all-atom explicit solvent Molecular Dynamics simulations to specify the thermodynamic conditions in that the E proteins are induced to experience extensive structural changes, such as during the process of reducing pH. We study the structural behavior of the E protein monomer at acid pH solution of distinct ionic strength. Extensive simulations are carried out with all the histidine residues in its full protonated form at four distinct ionic strengths. The results are analyzed in detail from structural and energetic perspectives, and the virtual protein movements are described by means of the principal component analyses. As the main result, we found that at acid pH and physiological ionic strength, the E protein suffers a major structural change; for lower or higher ionic strengths, the crystal structure is essentially maintained along of all extensive simulations. On the other hand, at basic pH, when all histidine residues are in the unprotonated form, the protein structure is very stable for ionic strengths ranging from 0 to 225 mM. Therefore, our findings support the hypothesis that the histidines constitute the hot points that induce configurational changes of E protein in acid pH, and give extra motivation to the development of new ideas for antivirus compound design.
Resumo:
The main aim of this work is to investigate the 1-butyl-3-methylimidazolium tetrafluoroborate ([C4C1Im]+[BF4]-) ionic liquid (IL) adsorption on the gamma-Al2O3 (100) by density functional theory calculations to try to rationalize the adsorption as an electrostatic phenomenon. Optimized geometries and interaction energies of IL one-monolayer on the gamma-Al2O3 were obtained on high surface coverage (one cationanion pair per 94.96 nm2). A study of dispersion force was made to estimate its contribution to the adsorption. Overall, the process is ruled by electrostatic interaction between ions and surface. Adsorption of the anion [BF4]- and cation [C4C1Im]+ was also studied by Bader charge analysis and charge density difference for supported and unsupported situations. It is suggested that the IL ions have their charges maintained with significant anion cloud polarization inward to the acid aluminum sites. (c) 2012 Wiley Periodicals, Inc.
Resumo:
The recent discovery that peroxisome proliferator-activated receptor gamma (PPAR gamma) targeted anti-diabetic drugs function by inhibiting Cdk5-mediated phosphorylation of the receptor has provided a new viewpoint to evaluate and perhaps develop improved insulin-sensitizing agents. Herein we report the development of a novel thiazolidinedione that retains similar anti-diabetic efficacy as rosiglitazone in mice yet does not elicit weight gain or edema, common side effects associated with full PPAR gamma activation. Further characterization of this compound shows GQ-16 to be an effective inhibitor of Cdk5-mediated phosphorylation of PPAR gamma. The structure of GQ-16 bound to PPAR gamma demonstrates that the compound utilizes a binding mode distinct from other reported PPAR gamma ligands, although it does share some structural features with other partial agonists, such as MRL-24 and PA-082, that have similarly been reported to dissociate insulin sensitization from weight gain. Hydrogen/deuterium exchange studies reveal that GQ-16 strongly stabilizes the beta-sheet region of the receptor, presumably explaining the compound's efficacy in inhibiting Cdk5-mediated phosphorylation of Ser-273. Molecular dynamics simulations suggest that the partial agonist activity of GQ-16 results from the compound's weak ability to stabilize helix 12 in its active conformation. Our results suggest that the emerging model, whereby "ideal" PPAR gamma-based therapeutics stabilize the beta-sheet/Ser-273 region and inhibit Cdk5-mediated phosphorylation while minimally invoking adipogenesis and classical agonism, is indeed a valid framework to develop improved PPAR gamma modulators that retain antidiabetic actions while minimizing untoward effects.
Resumo:
There is a continuous search for theoretical methods that are able to describe the effects of the liquid environment on molecular systems. Different methods emphasize different aspects, and the treatment of both the local and bulk properties is still a great challenge. In this work, the electronic properties of a water molecule in liquid environment is studied by performing a relaxation of the geometry and electronic distribution using the free energy gradient method. This is made using a series of steps in each of which we run a purely molecular mechanical (MM) Monte Carlo Metropolis simulation of liquid water and subsequently perform a quantum mechanical/molecular mechanical (QM/MM) calculation of the ensemble averages of the charge distribution, atomic forces, and second derivatives. The MP2/aug-cc-pV5Z level is used to describe the electronic properties of the QM water. B3LYP with specially designed basis functions are used for the magnetic properties. Very good agreement is found for the local properties of water, such as geometry, vibrational frequencies, dipole moment, dipole polarizability, chemical shift, and spin-spin coupling constants. The very good performance of the free energy method combined with a QM/MM approach along with the possible limitations are briefly discussed.
Resumo:
The peroxisome proliferator-activated receptor gamma (PPAR gamma) is a target for treatment of type II diabetes and other conditions. PPAR gamma full agonists, such as thiazolidinediones (TZDs), are effective insulin sensitizers and anti-inflammatory agents, but their use is limited by adverse side effects. Luteolin is a flavonoid with anti-inflammatory actions that binds PPAR gamma but, unlike TZDs, does not promote adipocyte differentiation. However, previous reports suggested variously that luteolin is a PPAR gamma agonist or an antagonist. We show that luteolin exhibits weak partial agonist/antagonist activity in transfections, inhibits several PPAR gamma target genes in 3T3-L1 cells (LPL, ORL1, and CEBP alpha) and PPAR gamma-dependent adipogenesis, but activates GLUT4 to a similar degree as rosiglitazone, implying gene-specific partial agonism. The crystal structure of the PPAR gamma ligand-binding domain (LBD) reveals that luteolin occupies a buried ligand-binding pocket (LBP) but binds an inactive PPAR gamma LBD conformer and occupies a space near the beta-sheet region far from the activation helix (H12), consistent with partial agonist/antagonist actions. A single myristic acid molecule simultaneously binds the LBP, suggesting that luteolin may cooperate with other ligands to bind PPAR gamma, and molecular dynamics simulations show that luteolin and myristic acid cooperate to stabilize the Omega-loop among H2', H3, and the beta-sheet region. It is noteworthy that luteolin strongly suppresses hypertonicity-induced release of the pro-inflammatory interleukin-8 from human corneal epithelial cells and reverses reductions in transepithelial electrical resistance. This effect is PPAR gamma-dependent. We propose that activities of luteolin are related to its singular binding mode, that anti-inflammatory activity does not require H12 stabilization, and that our structure can be useful in developing safe selective PPAR gamma modulators.
Resumo:
Supercritical carbon dioxide is a promising green-chemistry solvent for many enzyme-catalyzed chemical reactions, yet the striking stability of some enzymes in such unconventional environments is not well understood. Here, we investigate the stabilization of the Candida antarctica Lipase B (CALB) in supercritical carbon dioxide-water biphasic systems using molecular dynamics simulations. The preservation of the enzyme structure and optimal activity depend on the presence of small amounts of water in the supercritical dispersing medium. When the protein is at least partially hydrated, water molecules bind to specific sites on the enzyme surface and prevent carbon dioxide from penetrating its catalytic core. Strikingly, water and supercritical carbon dioxide cover the protein surface quite heterogeneously. In the first solvation layer, the hydrophilic residues at the surface of the protein are able to pin down patches of water, whereas carbon dioxide solvates preferentially hydrophobic surface residues. In the outer solvation shells, water molecules tend to cluster predominantly on top of the larger water patches of the first solvation layer instead of spreading evenly around the remainder of the protein surface. For CALB, this exposes the substrate-binding region of the enzyme to carbon dioxide, possibly facilitating diffusion of nonpolar substrates into the catalytic funnel. Therefore, by means of microheterogeneous solvation, enhanced accessibility of hydrophobic substrates to the active site can be achieved, while preserving the functional structure of the enzyme. Our results provide a molecular picture on the nature of the stability of proteins in nonaqueous media.
Resumo:
Molecular dynamics simulations have been performed for ionic liquids based on a ternary mixture of lithium and ammonium cations and a common anion, bis(trifluoromethylsulfonyl)imide, [Tf2N](-). We address structural changes resulting from adding Li+ in ionic liquids with increasing length of an ether-functionalized chain in the ammonium cation. The calculation of static structure factors reveals the lithium effect on charge ordering and intermediate range order in comparison with the neat ionic liquids. The charge ordering is modified in the lithium solution because the coordination of [Tf2N](-) toward Li+ is much stronger than ammonium cations. Intermediate range order is observed in neat ionic liquids based on ammonium cations with a long chain, but in the lithium solutions, there is also a nonhomogenous distribution of Li+ cations. The presence of Li+ enhances interactions between the ammonium cations due to correlations between the oxygen atom of the ether chain and the nitrogen atom of another ammonium cation.
Resumo:
Conflicting findings about the association between leprosy and TLR1 variants N248S and I602S have been reported. Here, we performed case-control and family based studies, followed by replication in 2 case-control populations from Brazil, involving 3162 individuals. Results indicated an association between TLR1 248S and leprosy in the case-control study (SS genotype odds ratio [OR], 1.81; P = .004) and the family based study (z = 2.02; P = .05). This association was consistently replicated in other populations (combined OR, 1.51; P < .001), corroborating the finding that 248S is a susceptibility factor for leprosy. Additionally, we demonstrated that peripheral blood mononuclear cells (PBMCs) carrying 248S produce a lower tumor necrosis factor/interleukin-10 ratio when stimulated with Mycobacterium leprae but not with lipopolysaccharide or PAM3cysK4. The same effect was observed after infection of PBMCs with the Moreau strain of bacillus Calmette-Guerin but not after infection with other strains. Finally, molecular dynamics simulations indicated that the Toll-like receptor 1 structure containing 248S amino acid is different from the structure containing 248N. Our results suggest that TLR1 248S is associated with an increased risk for leprosy, consistent with its hypoimmune regulatory function.