994 resultados para Modeling Methodology
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Informática
Resumo:
In this thesis, a predictive analytical and numerical modeling approach for the orthogonal cutting process is proposed to calculate temperature distributions and subsequently, forces and stress distributions. The models proposed include a constitutive model for the material being cut based on the work of Weber, a model for the shear plane based on Merchants model, a model describing the contribution of friction based on Zorev’s approach, a model for the effect of wear on the tool based on the work of Waldorf, and a thermal model based on the works of Komanduri and Hou, with a fraction heat partition for a non-uniform distribution of the heat in the interfaces, but extended to encompass a set of contributions to the global temperature rise of chip, tool and work piece. The models proposed in this work, try to avoid from experimental based values or expressions, and simplifying assumptions or suppositions, as much as possible. On a thermo-physical point of view, the results were affected not only by the mechanical or cutting parameters chosen, but also by their coupling effects, instead of the simplifying way of modeling which is to contemplate only the direct effect of the variation of a parameter. The implementation of these models was performed using the MATLAB environment. Since it was possible to find in the literature all the parameters for AISI 1045 and AISI O2, these materials were used to run the simulations in order to avoid arbitrary assumption.
Resumo:
This work aims to identify and rank a set of Lean and Green practices and supply chain performance measures on which managers should focus to achieve competitiveness and improve the performance of automotive supply chains. The identification of the contextual relationships among the suggested practices and measures, was performed through literature review. Their ranking was done by interviews with professionals from the automotive industry and academics with wide knowledge on the subject. The methodology of interpretive structural modelling (ISM) is a useful methodology to identify inter relationships among Lean and Green practices and supply chain performance measures and to support the evaluation of automotive supply chain performance. Using the ISM methodology, the variables under study were clustered according to their driving power and dependence power. The ISM methodology was proposed to be used in this work. The model intends to provide a better understanding of the variables that have more influence (driving variables), the others and those which are most influenced (dependent variables) by others. The information provided by this model is strategic for managers who can use it to identify which variables they should focus on in order to have competitive supply chains.
Resumo:
The rapid growth of big cities has been noticed since 1950s when the majority of world population turned to live in urban areas rather than villages, seeking better job opportunities and higher quality of services and lifestyle circumstances. This demographic transition from rural to urban is expected to have a continuous increase. Governments, especially in less developed countries, are going to face more challenges in different sectors, raising the essence of understanding the spatial pattern of the growth for an effective urban planning. The study aimed to detect, analyse and model the urban growth in Greater Cairo Region (GCR) as one of the fast growing mega cities in the world using remote sensing data. Knowing the current and estimated urbanization situation in GCR will help decision makers in Egypt to adjust their plans and develop new ones. These plans should focus on resources reallocation to overcome the problems arising in the future and to achieve a sustainable development of urban areas, especially after the high percentage of illegal settlements which took place in the last decades. The study focused on a period of 30 years; from 1984 to 2014, and the major transitions to urban were modelled to predict the future scenarios in 2025. Three satellite images of different time stamps (1984, 2003 and 2014) were classified using Support Vector Machines (SVM) classifier, then the land cover changes were detected by applying a high level mapping technique. Later the results were analyzed for higher accurate estimations of the urban growth in the future in 2025 using Land Change Modeler (LCM) embedded in IDRISI software. Moreover, the spatial and temporal urban growth patterns were analyzed using statistical metrics developed in FRAGSTATS software. The study resulted in an overall classification accuracy of 96%, 97.3% and 96.3% for 1984, 2003 and 2014’s map, respectively. Between 1984 and 2003, 19 179 hectares of vegetation and 21 417 hectares of desert changed to urban, while from 2003 to 2014, the transitions to urban from both land cover classes were found to be 16 486 and 31 045 hectares, respectively. The model results indicated that 14% of the vegetation and 4% of the desert in 2014 will turn into urban in 2025, representing 16 512 and 24 687 hectares, respectively.
Resumo:
This paper offers a new approach to estimating time-varying covariance matrices in the framework of the diagonal-vech version of the multivariate GARCH(1,1) model. Our method is numerically feasible for large-scale problems, produces positive semidefinite conditional covariance matrices, and does not impose unrealistic a priori restrictions. We provide an empirical application in the context of international stock markets, comparing the nev^ estimator with a number of existing ones.
Resumo:
In the latest years the wind energy sector experienced an exponential growth all over the world. What started as a deployment of onshore projects, soon moved to offshore and, more recently to the urban environment within the context of smart cities and renewable micro-generation. However, urban wind projects using micro turbines do not have enough profit margins to enable the setup of comprehensive and expensive measurement campaigns, a standard procedure for the deployment of large wind parks. To respond to the wind assessment needs of the future smart cities a new and simple methodology for urban wind resource assessment was developed. This methodology is based on the construction of a surface involving a built area in order to estimate the wind potential by treating it as very complex orography. This is a straightforward methodology that allows estimating the sustainable urban wind potential, being suitable to map the urban wind resource in large areas. The methodology was applied to a case study and the results enabled the wind potential assessment of a large urban area being consistent with experimental data obtained in the case study area, with maximum deviations of the order of 10% (mean wind speed) and 20% (power density).
Resumo:
A potentially renewable and sustainable source of energy is the chemical energy associated with solvation of salts. Mixing of two aqueous streams with different saline concentrations is spontaneous and releases energy. The global theoretically obtainable power from salinity gradient energy due to World’s rivers discharge into the oceans has been estimated to be within the range of 1.4-2.6 TW. Reverse electrodialysis (RED) is one of the emerging, membrane-based, technologies for harvesting the salinity gradient energy. A common RED stack is composed by alternately-arranged cation- and anion-exchange membranes, stacked between two electrodes. The compartments between the membranes are alternately fed with concentrated (e.g., sea water) and dilute (e.g., river water) saline solutions. Migration of the respective counter-ions through the membranes leads to ionic current between the electrodes, where an appropriate redox pair converts the chemical salinity gradient energy into electrical energy. Given the importance of the need for new sources of energy for power generation, the present study aims at better understanding and solving current challenges, associated with the RED stack design, fluid dynamics, ionic mass transfer and long-term RED stack performance with natural saline solutions as feedwaters. Chronopotentiometry was used to determinate diffusion boundary layer (DBL) thickness from diffusion relaxation data and the flow entrance effects on mass transfer were found to avail a power generation increase in RED stacks. Increasing the linear flow velocity also leads to a decrease of DBL thickness but on the cost of a higher pressure drop. Pressure drop inside RED stacks was successfully simulated by the developed mathematical model, in which contribution of several pressure drops, that until now have not been considered, was included. The effect of each pressure drop on the RED stack performance was identified and rationalized and guidelines for planning and/or optimization of RED stacks were derived. The design of new profiled membranes, with a chevron corrugation structure, was proposed using computational fluid dynamics (CFD) modeling. The performance of the suggested corrugation geometry was compared with the already existing ones, as well as with the use of conductive and non-conductive spacers. According to the estimations, use of chevron structures grants the highest net power density values, at the best compromise between the mass transfer coefficient and the pressure drop values. Finally, long-term experiments with natural waters were performed, during which fouling was experienced. For the first time, 2D fluorescence spectroscopy was used to monitor RED stack performance, with a dedicated focus on following fouling on ion-exchange membrane surfaces. To extract relevant information from fluorescence spectra, parallel factor analysis (PARAFAC) was performed. Moreover, the information obtained was then used to predict net power density, stack electric resistance and pressure drop by multivariate statistical models based on projection to latent structures (PLS) modeling. The use in such models of 2D fluorescence data, containing hidden, but extractable by PARAFAC, information about fouling on membrane surfaces, considerably improved the models fitting to the experimental data.
Resumo:
The aim of this work project is to find a model that is able to accurately forecast the daily Value-at-Risk for PSI-20 Index, independently of the market conditions, in order to expand empirical literature for the Portuguese stock market. Hence, two subsamples, representing more and less volatile periods, were modeled through unconditional and conditional volatility models (because it is what drives returns). All models were evaluated through Kupiec’s and Christoffersen’s tests, by comparing forecasts with actual results. Using an out-of-sample of 204 observations, it was found that a GARCH(1,1) is an accurate model for our purposes.
Resumo:
Organizations are undergoing serious difficulties to retain talent. Authors argue that Talent Management (TM) practices create beneficial outcomes for individuals and organizations. However, there is no research on the leaders’ role in the functioning of these practices. This study examines how LMX and role modeling influence the impact that TM practices have on employees’ trust in their organizations and retention. The analysis of two questionnaires (Nt1=175; Nt2=107) indicated that TM only reduced turnover intentions, via an increase in trust in the organization, when role modeling was high and not when it was low. Therefore, we can say that leaders are crucial in the TM context, and in sustaining a competitive advantage for organizations.
Resumo:
The main purpose of the research is to present a proposal for a methodology to support the rehabilitation project of renders of old buildings in Portugal. To achieve the objective it was considered essential to define the main types of participants and aspects to integrate the proposal. The research methodology consists in an inquiry presented to professional participants in rehabilitation, a market study of materials and products available in Portugal, the design of a methodology proposal and its application to a case study. The inquiry sample totals 24 answers from the targeted professionals. A sequence of relevant supporting procedures consists in the proposal, which aims to provide a supporting methodology to decide and project in this context and also to be tested with its application to the building. This proposal was applied to an old building with load-bearing stone masonry walls and air-lime based renders. It was concluded that the assessment of the building and external renderings’ condition, its diagnosis and of the supporting walls, the definition of intervention, the specification of materials to be used and performance requirements to comply, and also plans for conservation and periodic maintenance, are crucial. From the inquiry, compatibility between materials and complementary roles and points of view of different types of participants in rehabilitation must be highlighted. A proposal for a methodology to support the project could provide useful guidance particularly for architects and construction engineers, and improve the understanding of direct participants on site, therefore contributing for the correct implementation of intervention.
Resumo:
The aim of this study was to evaluated the efficacy of the Old Way/New Way methodology (Lyndon, 1989/2000) with regard to the permanent correction of a consolidated and automated technical error experienced by a tennis athlete (who is 18 years old and has been engaged in practice mode for about 6 years) in the execution of serves. Additionally, the study assessed the impact of intervention on the athlete’s psychological skills. An individualized intervention was designed using strategies that aimed to produce a) a detailed analysis of the error using video images; b) an increased kinaesthetic awareness; c) a reactivation of memory error; d) the discrimination and generalization of the correct motor action. The athlete’s psychological skills were measured with a Portuguese version of the Psychological Skills Inventory for Sports (Cruz & Viana, 1993). After the intervention, the technical error was corrected with great efficacy and an increase in the athlete’s psychological skills was verified. This study demonstrates the methodology’s efficacy, which is consistent with the effects of this type of intervention in different contexts.
Resumo:
Application of Experimental Design techniques has proven to be essential in various research fields, due to its statistical capability of processing the effect of interactions among independent variables, known as factors, in a system’s response. Advantages of this methodology can be summarized in more resource and time efficient experimentations while providing more accurate results. This research emphasizes the quantification of 4 antioxidants extraction, at two different concentration, prepared according to an experimental procedure and measured by a Photodiode Array Detector. Experimental planning was made following a Central Composite Design, which is a type of DoE that allows to consider the quadratic component in Response Surfaces, a component that includes pure curvature studies on the model produced. This work was executed with the intention of analyzing responses, peak areas obtained from chromatograms plotted by the Detector’s system, and comprehending if the factors considered – acquired from an extensive literary review – produced the expected effect in response. Completion of this work will allow to take conclusions regarding what factors should be considered for the optimization studies of antioxidants extraction in a Oca (Oxalis tuberosa) matrix.
Resumo:
The main purpose of the research is to present a proposal for a methodology to support the rehabilitation project of renders of old buildings. To achieve the objective it was considered essential to define the main types of participants and aspects to integrate the proposal. The research methodology consists in an inquiry presented to several professional participants in rehabilitation, a market study of materials and products available in Portugal, the design of a methodology proposal and its application to a case study. The inquiry sample totals 24 answers from the targeted professionals. A sequence of relevant supporting procedures consists in the proposal, which aims to provide a supporting methodology to decide and project in this context and also to be tested with its application to the building. This proposal was applied to an old building with load-bearing stone masonry walls and air-lime based renders. It was concluded that the assessment of the building and external renderings’ condition, its diagnosis and of the supporting walls, the definition of intervention, the specification of materials to be used and performance requirements to comply, and also plans for conservation and periodic maintenance, are crucial. From the inquiry, compatibility between materials and complementary roles and points of view of different types of participants in rehabilitation must be highlighted. A proposal for a methodology to support the project could provide useful guidance particularly for architects and construction engineers, and improve the understanding of direct participants on site, therefore contributing for the correct implementation of the intervention.