993 resultados para Mixed-layer salinity
Resumo:
Mineral and chemical alterations of basalts were studied in the upper part of the ocean crust using data of deep-sea drilling from D/S Glomar Challenger in the main structures of the Pacific floor. Extraction of majority of chemical elements (including heavy metals) from basalts results mainly from their interaction with heated sea water. As a result mineralized hydrothermal solutions are formed. On entering the ocean they influence greatly on ocean sedimentation and ore formation.
Resumo:
Modern variability in upwelling off southern Indonesia is strongly controlled by the Australian-Indonesian monsoon and the El Niño-Southern Oscillation, but multi-decadal to centennial-scale variations are less clear. We present high-resolution records of upper water column temperature, thermal gradient and relative abundances of mixed layer- and thermocline-dwelling planktonic foraminiferal species off southern Indonesia for the past two millennia that we use as proxies for upwelling variability. We find that upwelling was generally strong during the Little Ice Age (LIA) and weak during the Medieval Warm Period (MWP) and the Roman Warm Period (RWP). Upwelling is significantly anti-correlated to East Asian summer monsoonal rainfall and the zonal equatorial Pacific temperature gradient. We suggest that changes in the background state of the tropical Pacific may have substantially contributed to the centennial-scale upwelling trends observed in our records. Our results implicate the prevalence of an El Niño-like mean state during the LIA and a La Niña-like mean state during the MWP and the RWP.
Resumo:
The hydrothermal deposits that we analyzed from Leg 70 are composed of ferruginous green clays and fragments of manganese-hydroxide crust. Data from X-ray diffraction, IR-spectroscopy, electron diffraction, and chemical analyses indicate that the hydrothermal green clays are composed of disordered mixed-layer phases of celadonite-nontronite. Electron diffraction shows that the parameters of the unit cells and the degree of three-dimensional ordering of mixed-layer phases with 80% celadonite interlayers are very close to Fe-micas of polymorphic modification IM-celadonite. In some sections, there is a tendency for the number of celadonite layers to increase with depth. The manganese-hydroxide crust fragments are predominantly composed of todorokite (buserite). An essential feature of hydrothermal accumulation is the sharp separation of Fe and Mn. Ba/Ti and Ba/Sr ratios are typical indicators of hydrothermal deposits. Sediments composing the hydrothermal mounds were deposited from moderately heated waters, which had extracted the components from solid basalts in environments where there were considerable gradients of temperature, eH, and pH. The main masses of Fe and Mn were deposited in the late Pleistocene. Postsedimentary alteration of deposited hydrothermal sediments led to their slight recrystallization and, in the green clays, to celadonitization. Further, factor analysis (by Varentsov) of chemical components from these hydrothermal deposits revealed paragenetic assemblages. Green clays corresponding to a definite factor assemblage were formed during the main stage of hydrothermal mineral formation. Manganese hydroxide and associated components were largely accumulated during an early stage and at the end of the main stage.
Resumo:
It is shown that in 2002-2005 mass development of coccolithofore Emiliania huxleyi on the Gelendzhik shelf (northeast Black Sea) occurred annually and in May-June its abundance reached 1500000 cells/l. In 2004-2005 bloom of E. huxleyi was accompanied by mass development of diatom alga Chaetoceros subtilis var. abnormis f. simplex (600000-900000 cells/l). For the first time it was registered as a dominating form of Black Sea phytoplankton. Small flagellates and picoplankton algae played a noticeable role in phytoplankton throughout the entire period of the studies. Meanwhile in the early summer period the bulk of biomass consisted of coccolithophores (50-60%), while in the late summer period diatomaceous algae dominated (50-70%). Among ecological factors that favor coccolithophore development one may note microstratification of the upper mixed layer at a high illumination level and high temperature in surface waters (18-21°C). Terrigenous runoff during the rainy period had a negative effect on E. huxleyi development, while storms dispersed the population over the upper mixed layer. A wind-induced near-shore upwelling stimulated development of diatoms.
Accompanying wind measurements for bottle data of cruise B1/87 during the MRI-LDEO cooperative study
Accompanying wind measurements for bottle data of cruise B2/83 during the MRI-LDEO cooperative study
Accompanying wind measurements for bottle data of cruise B6/85 during the MRI-LDEO cooperative study
Accompanying wind measurements for bottle data of cruise B8/89 during the MRI-LDEO cooperative study
Accompanying wind measurements for bottle data of cruise B7/84 during the MRI-LDEO cooperative study