943 resultados para Mixed integer linear programming (MILP) model
Resumo:
Group decision making is the study of identifying and selecting alternatives based on the values and preferences of the decision maker. Making a decision implies that there are several alternative choices to be considered. This paper uses the concept of Data Envelopment Analysis to introduce a new mathematical method for selecting the best alternative in a group decision making environment. The introduced model is a multi-objective function which is converted into a multi-objective linear programming model from which the optimal solution is obtained. A numerical example shows how the new model can be applied to rank the alternatives or to choose a subset of the most promising alternatives.
Resumo:
This paper contributes to extend the minimax disparity to determine the ordered weighted averaging (OWA) model based on linear programming. It introduces the minimax disparity approach between any distinct pairs of the weights and uses the duality of linear programming to prove the feasibility of the extended OWA operator weights model. The paper finishes with an open problem. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper introduces a compact form for the maximum value of the non-Archimedean in Data Envelopment Analysis (DEA) models applied for the technology selection, without the need to solve a linear programming (LP). Using this method the computational performance the common weight multi-criteria decision-making (MCDM) DEA model proposed by Karsak and Ahiska (International Journal of Production Research, 2005, 43(8), 1537-1554) is improved. This improvement is significant when computational issues and complexity analysis are a concern.
Resumo:
Logistics distribution network design is one of the major decision problems arising in contemporary supply chain management. The decision involves many quantitative and qualitative factors that may be conflicting in nature. This paper applies an integrated multiple criteria decision making approach to design an optimal distribution network. In the approach, the analytic hierarchy process (AHP) is used first to determine the relative importance weightings or priorities of alternative warehouses with respect to both deliverer oriented and customer oriented criteria. Then, the goal programming (GP) model incorporating the constraints of system, resource, and AHP priority is formulated to select the best set of warehouses without exceeding the limited available resources. In this paper, two commercial packages are used: Expert Choice for determining the AHP priorities of the warehouses, and LINDO for solving the GP model. © 2007 IEEE.
Resumo:
This paper formulates several mathematical models for determining the optimal sequence of component placements and assignment of component types to feeders simultaneously or the integrated scheduling problem for a type of surface mount technology placement machines, called the sequential pick-andplace (PAP) machine. A PAP machine has multiple stationary feeders storing components, a stationary working table holding a printed circuit board (PCB), and a movable placement head to pick up components from feeders and place them to a board. The objective of integrated problem is to minimize the total distance traveled by the placement head. Two integer nonlinear programming models are formulated first. Then, each of them is equivalently converted into an integer linear type. The models for the integrated problem are verified by two commercial packages. In addition, a hybrid genetic algorithm previously developed by the authors is adopted to solve the models. The algorithm not only generates the optimal solutions quickly for small-sized problems, but also outperforms the genetic algorithms developed by other researchers in terms of total traveling distance.
Resumo:
This paper formulates a logistics distribution problem as the multi-depot travelling salesman problem (MDTSP). The decision makers not only have to determine the travelling sequence of the salesman for delivering finished products from a warehouse or depot to a customer, but also need to determine which depot stores which type of products so that the total travelling distance is minimised. The MDTSP is similar to the combination of the travelling salesman and quadratic assignment problems. In this paper, the two individual hard problems or models are formulated first. Then, the problems are integrated together, that is, the MDTSP. The MDTSP is constructed as both integer nonlinear and linear programming models. After formulating the models, we verify the integrated models using commercial packages, and most importantly, investigate whether an iterative approach, that is, solving the individual models repeatedly, can generate an optimal solution to the MDTSP. Copyright © 2006 Inderscience Enterprises Ltd.
Resumo:
In this work the solution of a class of capital investment problems is considered within the framework of mathematical programming. Upon the basis of the net present value criterion, the problems in question are mainly characterized by the fact that the cost of capital is defined as a non-decreasing function of the investment requirements. Capital rationing and some cases of technological dependence are also included, this approach leading to zero-one non-linear programming problems, for which specifically designed solution procedures supported by a general branch and bound development are presented. In the context of both this development and the relevant mathematical properties of the previously mentioned zero-one programs, a generalized zero-one model is also discussed. Finally,a variant of the scheme, connected with the search sequencing of optimal solutions, is presented as an alternative in which reduced storage limitations are encountered.
Using interior point algorithms for the solution of linear programs with special structural features
Resumo:
Linear Programming (LP) is a powerful decision making tool extensively used in various economic and engineering activities. In the early stages the success of LP was mainly due to the efficiency of the simplex method. After the appearance of Karmarkar's paper, the focus of most research was shifted to the field of interior point methods. The present work is concerned with investigating and efficiently implementing the latest techniques in this field taking sparsity into account. The performance of these implementations on different classes of LP problems is reported here. The preconditional conjugate gradient method is one of the most powerful tools for the solution of the least square problem, present in every iteration of all interior point methods. The effect of using different preconditioners on a range of problems with various condition numbers is presented. Decomposition algorithms has been one of the main fields of research in linear programming over the last few years. After reviewing the latest decomposition techniques, three promising methods were chosen the implemented. Sparsity is again a consideration and suggestions have been included to allow improvements when solving problems with these methods. Finally, experimental results on randomly generated data are reported and compared with an interior point method. The efficient implementation of the decomposition methods considered in this study requires the solution of quadratic subproblems. A review of recent work on algorithms for convex quadratic was performed. The most promising algorithms are discussed and implemented taking sparsity into account. The related performance of these algorithms on randomly generated separable and non-separable problems is also reported.
Resumo:
Analysis of the use of ICT in the aerospace industry has prompted the detailed investigation of an inventory-planning problem. There is a special class of inventory, consisting of expensive repairable spares for use in support of aircraft operations. These items, called rotables, are not well served by conventional theory and systems for inventory management. The context of the problem, the aircraft maintenance industry sector, is described in order to convey some of its special characteristics in the context of operations management. A literature review is carried out to seek existing theory that can be applied to rotable inventory and to identify a potential gap into which newly developed theory could contribute. Current techniques for rotable planning are identified in industry and the literature: these methods are modelled and tested using inventory and operational data obtained in the field. In the expectation that current practice leaves much scope for improvement, several new models are proposed. These are developed and tested on the field data for comparison with current practice. The new models are revised following testing to give improved versions. The best model developed and tested here comprises a linear programming optimisation, which finds an optimal level of inventory for multiple test cases, reflecting changing operating conditions. The new model offers an inventory plan that is up to 40% less expensive than that determined by current practice, while maintaining required performance.
Resumo:
Financial institutes are an integral part of any modern economy. In the 1970s and 1980s, Gulf Cooperation Council (GCC) countries made significant progress in financial deepening and in building a modern financial infrastructure. This study aims to evaluate the performance (efficiency) of financial institutes (banking sector) in GCC countries. Since, the selected variables include negative data for some banks and positive for others, and the available evaluation methods are not helpful in this case, so we developed a Semi Oriented Radial Model to perform this evaluation. Furthermore, since the SORM evaluation result provides a limited information for any decision maker (bankers, investors, etc...), we proposed a second stage analysis using classification and regression (C&R) method to get further results combining SORM results with other environmental data (Financial, economical and political) to set rules for the efficient banks, hence, the results will be useful for bankers in order to improve their bank performance and to the investors, maximize their returns. Mainly there are two approaches to evaluate the performance of Decision Making Units (DMUs), under each of them there are different methods with different assumptions. Parametric approach is based on the econometric regression theory and nonparametric approach is based on a mathematical linear programming theory. Under the nonparametric approaches, there are two methods: Data Envelopment Analysis (DEA) and Free Disposal Hull (FDH). While there are three methods under the parametric approach: Stochastic Frontier Analysis (SFA); Thick Frontier Analysis (TFA) and Distribution-Free Analysis (DFA). The result shows that DEA and SFA are the most applicable methods in banking sector, but DEA is seem to be most popular between researchers. However DEA as SFA still facing many challenges, one of these challenges is how to deal with negative data, since it requires the assumption that all the input and output values are non-negative, while in many applications negative outputs could appear e.g. losses in contrast with profit. Although there are few developed Models under DEA to deal with negative data but we believe that each of them has it is own limitations, therefore we developed a Semi-Oriented-Radial-Model (SORM) that could handle the negativity issue in DEA. The application result using SORM shows that the overall performance of GCC banking is relatively high (85.6%). Although, the efficiency score is fluctuated over the study period (1998-2007) due to the second Gulf War and to the international financial crisis, but still higher than the efficiency score of their counterpart in other countries. Banks operating in Saudi Arabia seem to be the highest efficient banks followed by UAE, Omani and Bahraini banks, while banks operating in Qatar and Kuwait seem to be the lowest efficient banks; this is because these two countries are the most affected country in the second Gulf War. Also, the result shows that there is no statistical relationship between the operating style (Islamic or Conventional) and bank efficiency. Even though there is no statistical differences due to the operational style, but Islamic bank seem to be more efficient than the Conventional bank, since on average their efficiency score is 86.33% compare to 85.38% for Conventional banks. Furthermore, the Islamic banks seem to be more affected by the political crisis (second Gulf War), whereas Conventional banks seem to be more affected by the financial crisis.
Resumo:
This paper explores the use of the optimization procedures in SAS/OR software with application to the contemporary logistics distribution network design using an integrated multiple criteria decision making approach. Unlike the traditional optimization techniques, the proposed approach, combining analytic hierarchy process (AHP) and goal programming (GP), considers both quantitative and qualitative factors. In the integrated approach, AHP is used to determine the relative importance weightings or priorities of alternative warehouses with respect to both deliverer oriented and customer oriented criteria. Then, a GP model incorporating the constraints of system, resource, and AHP priority is formulated to select the best set of warehouses without exceeding the limited available resources. To facilitate the use of integrated multiple criteria decision making approach by SAS users, an ORMCDM code was implemented in the SAS programming language. The SAS macro developed in this paper selects the chosen variables from a SAS data file and constructs sets of linear programming models based on the selected GP model. An example is given to illustrate how one could use the code to design the logistics distribution network.
Resumo:
This paper investigates a cross-layer design approach for minimizing energy consumption and maximizing network lifetime (NL) of a multiple-source and single-sink (MSSS) WSN with energy constraints. The optimization problem for MSSS WSN can be formulated as a mixed integer convex optimization problem with the adoption of time division multiple access (TDMA) in medium access control (MAC) layer, and it becomes a convex problem by relaxing the integer constraint on time slots. Impacts of data rate, link access and routing are jointly taken into account in the optimization problem formulation. Both linear and planar network topologies are considered for NL maximization (NLM). With linear MSSS and planar single-source and single-sink (SSSS) topologies, we successfully use Karush-Kuhn-Tucker (KKT) optimality conditions to derive analytical expressions of the optimal NL when all nodes are exhausted simultaneously. The problem for planar MSSS topology is more complicated, and a decomposition and combination (D&C) approach is proposed to compute suboptimal solutions. An analytical expression of the suboptimal NL is derived for a small scale planar network. To deal with larger scale planar network, an iterative algorithm is proposed for the D&C approach. Numerical results show that the upper-bounds of the network lifetime obtained by our proposed optimization models are tight. Important insights into the NL and benefits of cross-layer design for WSN NLM are obtained.
Resumo:
Data envelopment analysis (DEA) as introduced by Charnes, Cooper, and Rhodes (1978) is a linear programming technique that has widely been used to evaluate the relative efficiency of a set of homogenous decision making units (DMUs). In many real applications, the input-output variables cannot be precisely measured. This is particularly important in assessing efficiency of DMUs using DEA, since the efficiency score of inefficient DMUs are very sensitive to possible data errors. Hence, several approaches have been proposed to deal with imprecise data. Perhaps the most popular fuzzy DEA model is based on a-cut. One drawback of the a-cut approach is that it cannot include all information about uncertainty. This paper aims to introduce an alternative linear programming model that can include some uncertainty information from the intervals within the a-cut approach. We introduce the concept of "local a-level" to develop a multi-objective linear programming to measure the efficiency of DMUs under uncertainty. An example is given to illustrate the use of this method.
Resumo:
AMS subject classification: 90C05, 90A14.
Resumo:
Koopmans gyakorlati problémák megoldása során szerzett tapasztalatait általánosítva fogott hozzá a lineáris tevékenységelemzési modell kidolgozásához. Meglepődve tapasztalta, hogy a korabeli közgazdaságtan nem rendelkezett egységes, kellően egzakt termeléselmélettel és fogalomrendszerrel. Úttörő dolgozatában ezért - mintegy a lineáris tevékenységelemzési modell elméleti kereteként - lerakta a technológiai halmazok fogalmán nyugvó axiomatikus termeléselmélet alapjait is. Nevéhez fűződik a termelési hatékonyság és a hatékonysági árak fogalmának egzakt definíciója, s az egymást kölcsönösen feltételező viszonyuk igazolása a lineáris tevékenységelemzési modell keretében. A hatékonyság manapság használatos, pusztán műszaki szempontból értelmezett definícióját Koopmans csak sajátos esetként tárgyalta, célja a gazdasági hatékonyság fogalmának a bevezetése és elemzése volt. Dolgozatunkban a lineáris programozás dualitási tételei segítségével rekonstruáljuk ez utóbbira vonatkozó eredményeit. Megmutatjuk, hogy egyrészt bizonyításai egyenértékűek a lineáris programozás dualitási tételeinek igazolásával, másrészt a gazdasági hatékonysági árak voltaképpen a mai értelemben vett árnyékárak. Rámutatunk arra is, hogy a gazdasági hatékonyság értelmezéséhez megfogalmazott modellje az Arrow-Debreu-McKenzie-féle általános egyensúlyelméleti modellek közvetlen előzményének tekinthető, tartalmazta azok szinte minden lényeges elemét és fogalmát - az egyensúlyi árak nem mások, mint a Koopmans-féle hatékonysági árak. Végezetül újraértelmezzük Koopmans modelljét a vállalati technológiai mikroökonómiai leírásának lehetséges eszközeként. Journal of Economic Literature (JEL) kód: B23, B41, C61, D20, D50. /===/ Generalizing from his experience in solving practical problems, Koopmans set about devising a linear model for analysing activity. Surprisingly, he found that economics at that time possessed no uniform, sufficiently exact theory of production or system of concepts for it. He set out in a pioneering study to provide a theoretical framework for a linear model for analysing activity by expressing first the axiomatic bases of production theory, which rest on the concept of technological sets. He is associated with exact definition of the concept of production efficiency and efficiency prices, and confirmation of their relation as mutual postulates within the linear model of activity analysis. Koopmans saw the present, purely technical definition of efficiency as a special case; he aimed to introduce and analyse the concept of economic efficiency. The study uses the duality precepts of linear programming to reconstruct the results for the latter. It is shown first that evidence confirming the duality precepts of linear programming is equal in value, and secondly that efficiency prices are really shadow prices in today's sense. Furthermore, the model for the interpretation of economic efficiency can be seen as a direct predecessor of the Arrow–Debreu–McKenzie models of general equilibrium theory, as it contained almost every essential element and concept of them—equilibrium prices are nothing other than Koopmans' efficiency prices. Finally Koopmans' model is reinterpreted as a necessary tool for microeconomic description of enterprise technology.