984 resultados para Microscopic Traffic Simulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the primary desired capabilities of any future air traffic separation management system is the ability to provide early conflict detection and resolution effectively and efficiently. In this paper, we consider the risk of conflict as a primary measurement to be used for early conflict detection. This paper focuses on developing a novel approach to assess the impact of different measurement uncertainty models on the estimated risk of conflict. The measurement uncertainty model can be used to represent different sensor accuracy and sensor choices. Our study demonstrates the value of modelling measurement uncertainty in the conflict risk estimation problem and presents techniques providing a means of assessing sensor requirements to achieve desired conflict detection performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone for the assessment of osteoporosis follows a parabolic-type dependence with bone volume fraction; having minima values corresponding to both entire bone and entire marrow. Langton has recently proposed that the primary BUA mechanism may be significant phase interference due to variations in propagation transit time through the test sample as detected over the phase-sensitive surface of the receive ultrasound transducer. This fundamentally simple concept assumes that the propagation of ultrasound through a complex solid : liquid composite sample such as cancellous bone may be considered by an array of parallel ‘sonic rays’. The transit time of each ray is defined by the proportion of bone and marrow propagated, being a minimum (tmin) solely through bone and a maximum (tmax) solely through marrow. A Transit Time Spectrum (TTS), ranging from tmin to tmax, may be defined describing the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit time over the surface of the receive ultrasound transducer. Phase interference may result from interaction of ‘sonic rays’ of differing transit times. The aim of this study was to test the hypothesis that there is a dependence of phase interference upon the lateral inhomogenity of transit time by comparing experimental measurements and computer simulation predictions of ultrasound propagation through a range of relatively simplistic solid:liquid models exhibiting a range of lateral inhomogeneities. Methods: A range of test models was manufactured using acrylic and water as surrogates for bone and marrow respectively. The models varied in thickness in one dimension normal to the direction of propagation, hence exhibiting a range of transit time lateral inhomogeneities, ranging from minimal (single transit time) to maximal (wedge; ultimately the limiting case where each sonic ray has a unique transit time). For the experimental component of the study, two unfocused 1 MHz ¾” broadband diameter transducers were utilized in transmission mode; ultrasound signals were recorded for each of the models. The computer simulation was performed with Matlab, where the transit time and relative amplitude of each sonic ray was calculated. The transit time for each sonic ray was defined as the sum of transit times through acrylic and water components. The relative amplitude considered the reception area for each sonic ray along with absorption in the acrylic. To replicate phase-sensitive detection, all sonic rays were summed and the output signal plotted in comparison with the experimentally derived output signal. Results: From qualtitative and quantitative comparison of the experimental and computer simulation results, there is an extremely high degree of agreement of 94.2% to 99.0% between the two approaches, supporting the concept that propagation of an ultrasound wave, for the models considered, may be approximated by a parallel sonic ray model where the transit time of each ray is defined by the proportion of ‘bone’ and ‘marrow’. Conclusions: This combined experimental and computer simulation study has successfully demonstrated that lateral inhomogeneity of transit time has significant potential for phase interference to occur if a phase-sensitive ultrasound receive transducer is implemented as in most commercial ultrasound bone analysis devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In power hardware in the loop (PHIL) simulations, a real-time simulated power system is interfaced to a piece of hardware, usually called hardware under test (HuT). A PHIL test can be realized using several simulation tools. Among them Real Time Digital Simulator (RTDS) is an ideal tool to perform complex power system simulations in near real-time. Stable operation of the entire system, along with the accuracy of simulation results are the main concerns regarding a PHIL simulation. In this paper, a simulated power network on RTDS will be interfaced to HuT through a voltage source converter (VSC). Issues around stability and other interface problems are studied and a new method to stabilize some unstable PHIL cases is proposed. PHIL simulation results in PSCAD and RSCAD are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different types of defects can be introduced into graphene during material synthesis, and significantly influence the properties of graphene. In this work, we investigated the effects of structural defects, edge functionalisation and reconstruction on the fracture strength and morphology of graphene by molecular dynamics simulations. The minimum energy path analysis was conducted to investigate the formation of Stone-Wales defects. We also employed out-of-plane perturbation and energy minimization principle to study the possi-ble morphology of graphene nanoribbons with edge-termination. Our numerical results show that the fracture strength of graphene is dependent on defects and environmental temperature. However, pre-existing defects may be healed, resulting in strength recovery. Edge functionalization can induce compressive stress and ripples in the edge areas of gra-phene nanoribbons. On the other hand, edge reconstruction contributed to the tensile stress and curved shape in the graphene nanoribbons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crowds of noncombatants play a large and increasingly recognized role in modern military operations and often create substantial difficulties for the combatant forces involved. However, realistic models of crowds are essentially absent from current military simulations. To address this problem, the authors are developing a crowd simulation capable of generating crowds of noncombatant civilians that exhibit a variety of realistic individual and group behaviors at differing levels of fidelity. The crowd simulation is interoperable with existing military simulations using a standard, distributed simulation architecture. Commercial game technology is used in the crowd simulation to model both urban terrain and the physical behaviors of the human characters that make up the crowd. The objective of this article is to present the design and development process of a simulation that integrates commercially available game technology with current military simulations to generate realistic and believable crowd behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a multi-layer spectrum sensing optimisation algorithm to maximise sensing efficiency by computing the optimal sensing and transmission durations for a fast changing, dynamic primary user. Dynamic primary user traffic is modelled as a random process, where the primary user changes states during both the sensing period and transmission period to reflect a more realistic scenario. Furthermore, we formulate joint constraints to correctly reflect interference to the primary user and lost opportunity of the secondary user during the transmission period. Finally, we implement a novel duty cycle based detector that is optimised with respect to PU traffic to accurately detect primary user activity during the sensing period. Simulation results show that unlike currently used detection models, the proposed algorithm can jointly optimise the sensing and transmission durations to simultaneously satisfy the optimisation constraints for the considered primary user traffic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper treats the blast response of a pile foundation in saturated sand using explicit nonlinear finite element analysis, considering complex material behavior of soil and soil–pile interaction. Blast wave propagation in the soil is studied and the horizontal deformation of pile and effective stresses in the pile are presented. Results indicate that the upper part of the pile to be vulnerable and the pile response decays with distance from the explosive. The findings of this research provide valuable information on the effects of underground explosions on pile foundation and will guide future development, validation and application of computer models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulation has been widely used to estimate the benefits of Cooperative Systems (CS) based on Inter-Vehicular Communications (IVC). This paper presents a new architecture built with the SiVIC simulator and the RTMaps™ multisensors prototyping platform. We introduce several improvements from a previous similar architecture, regarding IVC modelisation and vehicles’ control. It has been tuned with on-road measurements to improve fidelity. We discuss the results of a freeway emergency braking scenario (EEBL) implemented to validate our architecture’s capabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooperative Systems provide, through the multiplication of information sources over the road, a lot of potential to improve the safety of road users, especially drivers. However, developing cooperative ITS applications requires additional resources compared to non-cooperative applications which are both time consuming and expensive. In this paper, we present a simulation architecture aimed at prototyping cooperative ITS applications in an accurate and detailed, close-to-reality environment; the architecture is designed to be modular and generalist. It can be used to simulate any type of CS applications as well as augmented perception. Then, we discuss the results of two applications deployed with our architecture, using a common freeway emergency braking scenario. The first application is Emergency Electronic Brake Light (EEBL); we discuss improvements in safety in terms of the number of crashes and the severity of crashes. The second application compares the performance of a cooperative risk assessment using an augmented map against a non-cooperative approach based on local-perception only. Our results show a systematic improvement of forward warning time for most vehicles in the string when using the augmented-map-based risk assessment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using Monte Carlo simulation for radiotherapy dose calculation can provide more accurate results when compared to the analytical methods usually found in modern treatment planning systems, especially in regions with a high degree of inhomogeneity. These more accurate results acquired using Monte Carlo simulation however, often require orders of magnitude more calculation time so as to attain high precision, thereby reducing its utility within the clinical environment. This work aims to improve the utility of Monte Carlo simulation within the clinical environment by developing techniques which enable faster Monte Carlo simulation of radiotherapy geometries. This is achieved principally through the use new high performance computing environments and simpler alternative, yet equivalent representations of complex geometries. Firstly the use of cloud computing technology and it application to radiotherapy dose calculation is demonstrated. As with other super-computer like environments, the time to complete a simulation decreases as 1=n with increasing n cloud based computers performing the calculation in parallel. Unlike traditional super computer infrastructure however, there is no initial outlay of cost, only modest ongoing usage fees; the simulations described in the following are performed using this cloud computing technology. The definition of geometry within the chosen Monte Carlo simulation environment - Geometry & Tracking 4 (GEANT4) in this case - is also addressed in this work. At the simulation implementation level, a new computer aided design interface is presented for use with GEANT4 enabling direct coupling between manufactured parts and their equivalent in the simulation environment, which is of particular importance when defining linear accelerator treatment head geometry. Further, a new technique for navigating tessellated or meshed geometries is described, allowing for up to 3 orders of magnitude performance improvement with the use of tetrahedral meshes in place of complex triangular surface meshes. The technique has application in the definition of both mechanical parts in a geometry as well as patient geometry. Static patient CT datasets like those found in typical radiotherapy treatment plans are often very large and present a significant performance penalty on a Monte Carlo simulation. By extracting the regions of interest in a radiotherapy treatment plan, and representing them in a mesh based form similar to those used in computer aided design, the above mentioned optimisation techniques can be used so as to reduce the time required to navigation the patient geometry in the simulation environment. Results presented in this work show that these equivalent yet much simplified patient geometry representations enable significant performance improvements over simulations that consider raw CT datasets alone. Furthermore, this mesh based representation allows for direct manipulation of the geometry enabling motion augmentation for time dependant dose calculation for example. Finally, an experimental dosimetry technique is described which allows the validation of time dependant Monte Carlo simulation, like the ones made possible by the afore mentioned patient geometry definition. A bespoke organic plastic scintillator dose rate meter is embedded in a gel dosimeter thereby enabling simultaneous 3D dose distribution and dose rate measurement. This work demonstrates the effectiveness of applying alternative and equivalent geometry definitions to complex geometries for the purposes of Monte Carlo simulation performance improvement. Additionally, these alternative geometry definitions allow for manipulations to be performed on otherwise static and rigid geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-faceted study is conducted with the objective of estimating the potential fiscal savings in annoyance and sleep disturbance related health costs due to providing improved building acoustic design standards. This study uses balcony acoustic treatments in response to road traffic noise as an example. The study area is the State of Queensland in Australia, where regional road traffic noise mapping data is used in conjunction with standard dose–response curves to estimate the population exposure levels. The background and the importance of using the selected road traffic noise indicators are discussed. In order to achieve the objective, correlations between the mapping indicator (LA10 (18 hour)) and the dose response curve indicators (Lden and Lnight) are established via analysis on a large database of road traffic noise measurement data. The existing noise exposure of the study area is used to estimate the fiscal reductions in health related costs through the application of simple estimations of costs per person per year per degree of annoyance or sleep disturbance. The results demonstrate that balcony acoustic treatments may provide a significant benefit towards reducing the health related costs of road traffic noise in a community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urban road traffic noise in cities is an ongoing and increasing problem across much of the world. Consequently a large amount of effort is expended in attempts to address this problem, especially in the area of acoustic design of buildings. Acoustic design policies developed by government authorities will typically focus on required transport noise reductions through a building façade to meet a specified internal noise levels. The significance of balcony acoustic treatments has been highlighted in recent decades yet this area has potentially been considered less important than the need for acoustic isolation of building facades. This paper outlines recent research that has been conducted in determining the significance of balcony acoustic treatments in mitigating urban road traffic noise. It summarizes recent literature, some of which focuses on technological advances in the knowledge of balcony acoustic design and some literature discusses the overall aims and benefits of balcony acoustic design. The aim of this paper is to promote the use of balcony acoustic design as a significant element in the overall solution towards mitigating road traffic noise in modern cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Balcony acoustic treatments can mitigate the effects of community road traffic noise. To further investigate, a theoretical study into the effects of balcony acoustic treatment combinations on speech interference and transmission is conducted for various street geometries. Nine different balcony types are investigated using a combined specular and diffuse reflection computer model. Diffusion in the model is calculated using the radiosity technique. The balcony types include a standard balcony with or without a ceiling and with various combinations of parapet, ceiling absorption and ceiling shield. A total of 70 balcony and street geometrical configurations are analyzed with each balcony type, resulting in 630 scenarios. In each scenario the reverberation time, speech interference level (SIL) and speech transmission index (STI) are calculated. These indicators are compared to determine trends based on the effects of propagation path, inclusion of opposite buildings and difference with a reference position outside the balcony. The results demonstrate trends in SIL and STI with different balcony types. It is found that an acoustically treated balcony reduces speech interference. A parapet provides the largest improvement, followed by absorption on the ceiling. The largest reductions in speech interference arise when a combination of balcony acoustic treatments are applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deploying wireless networks in networked control systems (NCSs) has become more and more popular during the last few years. As a typical type of real-time control systems, an NCS is sensitive to long and nondeterministic time delay and packet losses. However, the nature of the wireless channel has the potential to degrade the performance of NCS networks in many aspects, particularly in time delay and packet losses. Transport layer protocols could play an important role in providing both reliable and fast transmission service to fulfill NCS’s real-time transmission requirements. Unfortunately, none of the existing transport protocols, including the Transport Control Protocol (TCP) and the User Datagram Protocol (UDP), was designed for real-time control applications. Moreover, periodic data and sporadic data are two types of real-time data traffic with different priorities in an NCS. Due to the lack of support for prioritized transmission service, the real-time performance for periodic and sporadic data in an NCS network is often degraded significantly, particularly under congested network conditions. To address these problems, a new transport layer protocol called Reliable Real-Time Transport Protocol (RRTTP) is proposed in this thesis. As a UDP-based protocol, RRTTP inherits UDP’s simplicity and fast transmission features. To improve the reliability, a retransmission and an acknowledgement mechanism are designed in RRTTP to compensate for packet losses. They are able to avoid unnecessary retransmission of the out-of-date packets in NCSs, and collisions are unlikely to happen, and small transmission delay can be achieved. Moreover, a prioritized transmission mechanism is also designed in RRTTP to improve the real-time performance of NCS networks under congested traffic conditions. Furthermore, the proposed RRTTP is implemented in the Network Simulator 2 for comprehensive simulations. The simulation results demonstrate that RRTTP outperforms TCP and UDP in terms of real-time transmissions in an NCS over wireless networks.