907 resultados para Micro-tomografia
Resumo:
CORROSION; WATER; SPECTROSCOPY; CHLORIDE; ZINC; NUCLEATION; INTERFACE; ELECTRODE; SURFACES; GROWTH
Resumo:
CORROSION; MECHANISM; WATER; ZINC
Resumo:
In this study, we chronicle the establishment of a novel transformation system for the unicellular marine green alga, Dunaliella salina. We introduced the CaMV35S promoter-GUS construct into D. saliva with a PDS1000/He micro-particle bombardment system. Forty eight h after transformation, via histochemical staining, we observed the transient expression of GUS in D. salina cells which had been bombarded under rupture-disc pressures of 450 psi and 900 psi. We observed no GUS activity in either the negative or the blank controls. Our findings indicated that the micro-particle bombardment method constituted a feasible approach to the genetic transformation of D. salina. We also conducted tests of the cells' sensitivity to seven antibiotics and one herbicide, and our results suggested that 20 mu g/ ml of Basta could inhibit cell growth completely. The bar gene, which encodes for phosphinothricin acetyltransferase and confers herbicide tolerance, was introduced into the cells via the above established method. The results of PCR and PCR-Southern blot analyses indicated that the gene was successfully integrated into the genome of the transformants.
Resumo:
This study investigated the delivery of a SV40 promoter driving lacZ gene into cells of Kappaphycus alvarezii using particle bombardment. Thallus pieces 0.5-0.8 mm in diameter and 1 cm in length were prepared as gene recipients. Bombardment parameters of 450 psi (rupture pressures) x 6 cm (particle travel distances), 650 psi x 6 cm, 1,100 psi x 6 cm and 1,100 psi x 9 cm were used. A significant increase in transformation efficiency from about 33% under the rupture pressure of 450 psi to 87% at 650 psi was observed in transformed thalli. Most of the positive cells appeared in epidermal cells bombarded at 450 psi, whereas positive signals were seen in both epidermal and medullary cells at 650 psi. No positive transient expression was detected at a bombardment of 1,100 psi, or in negative or blank controls. For the conditions tested, the best parameter was obtained at 650 psi at a distance of 6 cm. Thus, the strategy of taking vegetative thalli as recipients, using particle bombardment, and combining this with micro-propagation, together with developing an in vivo selectable marker, is a viable way to produce stable transformants, to eliminate chimeric expression, and to achieve transgenic breeding in K. alvarezii.
Resumo:
The abundance and biomass of ciliated protozoa and copepod nauplii were investigated at 21 grid stations and two anchored stations in the Laizhou Bay, Bohai Sea, China in June 1998. Dilution incubations were carried out to investigate micro-zooplankton grazing pressure at the anchored stations during spring tide and neap tide. The dominant species were Tintinnopsis amoyensis, T. chinglanensis, T. pallida and aloricate ciliates. A total of 13 species of tintinnids were found. The total abundance of ciliates and nauplii ranged from 30 to 2390 ind l(-1) at grid stations. Tintinnopsis amoyensis was the only ciliate found at the anchored stations and in concentrations which varied from 0 to 6700 ind l(-1). The spatial distribution of ciliates was patchy. Tintinnopsis amoyensis and T. pallida were distributed in the Weihe River mouth and Xiaoqinghe River mouth respectively. The aloricate ciliates, T. chinglanensis and Codonellopsis ostenfeldi dominated offshore in sequence. The water mixing process may affect the spatial pattern of the dominant ciliate species. The abundance and biomass of copepod nauplii were in the range of 0-140 ind l(-1) and 0-7 mu g C l(-1) respectively, with the peak appearing at grid station 15. The total biomass of ciliates and copepod nauplii was in the range of 1(.)5-25 mu g C l(-1). Water column biomass of ciliates and nauplii varied from 2(.)37 to 52(.)3 mg C m(-2). At the anchored stations, the phytoplankton growth rates ranged from undetectable to 0 21 d(-1) and micro-zooplankton grazing rates from 0 13 to 0(.)57 d(-1). The grazing pressure of micro-zooplankton were 12 to 43% of the chlorophyll standing stock and 84 to 267% of the chlorophyll (C) 2000 Academic Press.
Resumo:
With increasing applied voltage, three types of anodic coatings, passive film, micro-spark ceramic coating and spark ceramic coating were made by micro-arc oxidization (MAO) technique on AZ91D magnesium alloy in alkali-silicate solution. The structure, composition characteristics and the electrochemical properties of coatings were also studied with SEM, XRD and EIS (electrochemical impedance spectroscopy) technique, respectively. It is found that the electrochemical properties are closely related to the structure and composition characteristics of the anodic coatings. At the same time, the characteristics of the three types of anodic coatings differ significantly, among them, the micro-spark ceramic coating, prepared in the voltage range of 170similar to220V exhibits compact, homogeneous structure and highest corrosion-resistance.
Resumo:
The micro-pore configurations on the matrix surface were studied by SEM. The matrix of molten carbonate fuel cell (MCFC) performance was also improved by the better coordination between the reasonable radius of the micro-pores and the higher porosity of the cell matrix. The many and complicated micro-pore configurations in the cell matrix promoted the volatilization of the organic additives and the burn of polyvinyl butyral (PVB). The smooth volatilization of the organic additives and the complete burn of PVB were the significant factors for the improved MCFC performance. Oxygen diffusion controlled-burn mechanism of PVB in the cell matrix was proposed. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
2008
Resumo:
2015
Resumo:
Poolton, Nigel; Towlson, B.M.; Hamilton, B.; Evans, D.A., (2006) 'New instrumentation for micro-imaging X-ray absorption spectroscopy using optical detection methods', Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 246(2) pp.445-451 RAE2008
Resumo:
The aim of this project is to integrate neuronal cell culture with commercial or in-house built micro-electrode arrays and MEMS devices. The resulting device is intended to support neuronal cell culture on its surface, expose specific portions of a neuronal population to different environments using microfluidic gradients and stimulate/record neuronal electrical activity using micro-electrode arrays. Additionally, through integration of chemical surface patterning, such device can be used to build neuronal cell networks of specific size, conformation and composition. The design of this device takes inspiration from the nervous system because its development and regeneration are heavily influenced by surface chemistry and fluidic gradients. Hence, this device is intended to be a step forward in neuroscience research because it utilizes similar concepts to those found in nature. The large part of this research revolved around solving technical issues associated with integration of biology, surface chemistry, electrophysiology and microfluidics. Commercially available microelectrode arrays (MEAs) are mechanically and chemically brittle making them unsuitable for certain surface modification and micro-fluidic integration techniques described in the literature. In order to successfully integrate all the aspects into one device, some techniques were heavily modified to ensure that their effects on MEA were minimal. In terms of experimental work, this thesis consists of 3 parts. The first part dealt with characterization and optimization of surface patterning and micro-fluidic perfusion. Through extensive image analysis, the optimal conditions required for micro-contact printing and micro-fluidic perfusion were determined. The second part used a number of optimized techniques and successfully applied these to culturing patterned neural cells on a range of substrates including: Pyrex, cyclo-olefin and SiN coated Pyrex. The second part also described culturing neurons on MEAs and recording electrophysiological activity. The third part of the thesis described integration of MEAs with patterned neuronal culture and microfluidic devices. Although integration of all methodologies proved difficult, a large amount of data relating to biocompatibility, neuronal patterning, electrophysiology and integration was collected. Original solutions were successfully applied to solve a number of issues relating to consistency of micro printing and microfluidic integration leading to successful integration of techniques and device components.
Resumo:
Simulation of pedestrian evacuations of smart buildings in emergency is a powerful tool for building analysis, dynamic evacuation planning and real-time response to the evolving state of evacuations. Macroscopic pedestrian models are low-complexity models that are and well suited to algorithmic analysis and planning, but are quite abstract. Microscopic simulation models allow for a high level of simulation detail but can be computationally intensive. By combining micro- and macro- models we can use each to overcome the shortcomings of the other and enable new capability and applications for pedestrian evacuation simulation that would not be possible with either alone. We develop the EvacSim multi-agent pedestrian simulator and procedurally generate macroscopic flow graph models of building space, integrating micro- and macroscopic approaches to simulation of the same emergency space. By “coupling” flow graph parameters to microscopic simulation results, the graph model captures some of the higher detail and fidelity of the complex microscopic simulation model. The coupled flow graph is used for analysis and prediction of the movement of pedestrians in the microscopic simulation, and investigate the performance of dynamic evacuation planning in simulated emergencies using a variety of strategies for allocation of macroscopic evacuation routes to microscopic pedestrian agents. The predictive capability of the coupled flow graph is exploited for the decomposition of microscopic simulation space into multiple future states in a scalable manner. By simulating multiple future states of the emergency in short time frames, this enables sensing strategy based on simulation scenario pattern matching which we show to achieve fast scenario matching, enabling rich, real-time feedback in emergencies in buildings with meagre sensing capabilities.
Resumo:
This thesis is centred on two experimental fields of optical micro- and nanofibre research; higher mode generation/excitation and evanescent field optical manipulation. Standard, commercial, single-mode silica fibre is used throughout most of the experiments; this generally produces high-quality, single-mode, micro- or nanofibres when tapered in a flame-heated, pulling rig in the laboratory. Single mode fibre can also support higher transverse modes, when transmitting wavelengths below that of their defined single-mode regime cut-off. To investigate this, a first-order Laguerre-Gaussian beam, LG01 of 1064 nm wavelength and doughnut-shaped intensity profile is generated free space via spatial light modulation. This technique facilitates coupling to the LP11 fibre mode in two-mode fibre, and convenient, fast switching to the fundamental mode via computer-generated hologram modulation. Following LP11 mode loss when exponentially tapering 125μm diameter fibre, two mode fibre with a cladding diameter of 80μm is selected fir testing since it is more suitable for satisfying the adiabatic criteria for fibre tapering. Proving a fruitful endeavour, experiments show a transmission of 55% of the original LP11 mode set (comprising TE01, TM01, HE21e,o true modes) in submicron fibres. Furthermore, by observing pulling dynamics and progressive mode-lass behaviour, it is possible to produce a nanofibre which supports only the TE01 and TM01 modes, while suppressing the HE21e,o elements of the LP11 group. This result provides a basis for experimental studies of atom trapping via mode-interference, and offers a new set of evanescent field geometries for sensing and particle manipulation applications. The thesis highlights the experimental results of the research unit’s Cold Atom subgroup, who successfully integrated one such higher-mode nanofibre into a cloud of cold Rubidium atoms. This led to the detection of stronger signals of resonance fluorescence coupling into the nanofibre and for light absorption by the atoms due to the presence of higher guided modes within the fibre. Theoretical work on the impact of the curved nanofibre surface on the atomic-surface van der Waals interaction is also presented, showing a clear deviation of the potential from the commonly-used flat-surface approximation. Optical micro- and nanofibres are also useful tools for evanescent-field mediated optical manipulation – this includes propulsion, defect-induced trapping, mass migration and size-sorting of micron-scale particles in dispersion. Similar early trapping experiments are described in this thesis, and resulting motivations for developing a targeted, site-specific particle induction method are given. The integration of optical nanofibres into an optical tweezers is presented, facilitating individual and group isolation of selected particles, and their controlled positioning and conveyance in the evanescent field. The effects of particle size and nanofibre diameter on pronounced scattering is experimentally investigated in this systems, as are optical binding effects between adjacent particles in the evanescent field. Such inter-particle interactions lead to regulated self-positioning and particle-chain speed enhancements.