950 resultados para Meteorology, Agricultural.
Resumo:
The Phosphorus Indicators Tool provides a catchment-scale estimation of diffuse phosphorus (P) loss from agricultural land to surface waters using the most appropriate indicators of P loss. The Tool provides a framework that may be applied across the UK to estimate P loss, which is sensitive not only to land use and management but also to environmental factors such as climate, soil type and topography. The model complexity incorporated in the P Indicators Tool has been adapted to the level of detail in the available data and the need to reflect the impact of changes in agriculture. Currently, the Tool runs on an annual timestep and at a 1 km(2) grid scale. We demonstrate that the P Indicators Tool works in principle and that its modular structure provides a means of accounting for P loss from one layer to the next, and ultimately to receiving waters. Trial runs of the Tool suggest that modelled P delivery to water approximates measured water quality records. The transparency of the structure of the P Indicators Tool means that identification of poorly performing coefficients is possible, and further refinements of the Tool can be made to ensure it is better calibrated and subsequently validated against empirical data, as it becomes available.
Resumo:
A generic Nutrient Export Risk Matrix (NERM) approach is presented. This provides advice to farmers and policy makers on good practice for reducing nutrient loss and is intended to persuade them to implement such measures. Combined with a range of nutrient transport modelling tools and field experiments, NERMs can play an important role in reducing nutrient export from agricultural land. The Phosphorus Export Risk Matrix (PERM) is presented as an example NERM. The PERM integrates hydrological understanding of runoff with a number of agronomic and policy factors into a clear problem-solving framework. This allows farmers and policy makers to visualise strategies for reducing phosphorus loss through proactive land management. The risk Of Pollution is assessed by a series of informed questions relating to farming intensity and practice. This information is combined with the concept of runoff management to point towards simple, practical remedial strategies which do not compromise farmers' ability to obtain sound economic returns from their crop and livestock.
Resumo:
This review evaluates evidence of the impact of uncomposted plant residues, composts, manures, and liquid preparations made from composts (compost extracts and teas) on pest and disease incidence and severity in agricultural and horticultural crop production. Most reports on pest control using such organic amendments relate to tropical or and climates. The majority of recent work on the use of organic amendments for prevention and control of diseases relates to container-produced plants, particularly ornamentals. However, there is growing interest in the potential for using composts to prevent and control diseases in temperate agricultural and horticultural field crops and information concerning their use and effectiveness is slowly increasing. The impact of uncomposted plant residues, composts, manures, and compost extracts/teas on pests and diseases is discussed in relation to sustainable temperate field and protected cropping systems. The factors affecting efficacy or such organic amendments in preventing and controlling pests and disease are examined and the mechanisms through which control is achieved are described.
Resumo:
In this paper we pledge that physically based equations should be combined with remote sensing techniques to enable a more theoretically rigorous estimation of area-average soil heat flux, G. A standard physical equation (i.e. the analytical or exact method) for the estimation of G, in combination with a simple, but theoretically derived, equation for soil thermal inertia (F), provides the basis for a more transparent and readily interpretable method for the estimation of G; without the requirement for in situ instrumentation. Moreover, such an approach ensures a more universally applicable method than those derived from purely empirical studies (employing vegetation indices and albedo, for example). Hence, a new equation for the estimation of Gamma(for homogeneous soils) is discussed in this paper which only requires knowledge of soil type, which is readily obtainable from extant soil databases and surveys, in combination with a coarse estimate of moisture status. This approach can be used to obtain area-averaged estimates of Gamma(and thus G, as explained in paper II) which is important for large-scale energy balance studies that employ aircraft or satellite data. Furthermore, this method also relaxes the instrumental demand for studies at the plot and field scale (no requirement for in situ soil temperature sensors, soil heat flux plates and/or thermal conductivity sensors). In addition, this equation can be incorporated in soil-vegetation-atmosphere-transfer models that use the force restore method to update surface temperatures (such as the well-known ISBA model), to replace the thermal inertia coefficient.
Resumo:
For vegetated surfaces, calculation of soil heat flux, G, with the Exact or Analytical method requires a harmonic analysis of below-canopy soil surface temperature, to obtain the shape of the diurnal course of G. When determining G with remote sensing methods, only composite (vegetation plus soil) radiometric brightness temperature is available. This paper presents a simple equation that relates the sum of the harmonic terms derived for the composite radiometric surface temperature to that of belowcanopy soil surface temperature. The thermal inertia, Gamma(,) for which a simple equation has been presented in a companion paper, paper I, is used to set the magnitude of G. To assess the success of the method proposed in this paper for the estimation of the diurnal shape of G, a comparison was made between 'remote' and in situ calculated values from described field sites. This indicated that the proposed method was suitable for the estimation of the shape of G for a variety of vegetation types and densities. The approach outlined in paper I, to obtain Gamma, was then combined with the estimated harmonic terms to predict estimates of G, which were compared to values predicted by empirical remote methods found in the literature. This indicated that the method proposed in the combination of papers I and II gave reliable estimates of G, which, in comparison to the other methods, resulted in more realistic predictions for vegetated surfaces. This set of equations can also be used for bare and sparsely vegetated soils, making it a universally applicable method. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
An inventory of heavy metal inputs (Zn, Cu, Ni, Pb, Cd, Cr, As and Hg) to agricultural soils in England and Wales in 2000 is presented, accounting for major sources including atmospheric deposition, sewage sludge, livestock manures, inorganic fertilisers and lime, agrochemicals, irrigation water, industrial by-product 'wastes' and composts. Across the whole agricultural land area, atmospheric deposition was the main source of most metals, ranging from 25 to 85% of total inputs. Livestock manures and sewage sludge were also important sources, responsible for an estimated 37-40 and 8-17% of total Zn and Cu inputs, respectively. However, at the individual field scale sewage sludge, livestock manures and industrial wastes could be the major source of many metals where these materials are applied. This work will assist in developing strategies for reducing heavy metal inputs to agricultural land and effectively targeting policies to protect soils from long-term heavy metal accumulation. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Peat wetlands that have been restored from agricultural Land have the potential to act as Long term sources of phosphorus (P) and, therefore have to potenital to accelerate freshwater eutrophication. During a two-year study the water table in a eutrophic fen peat that was managed by pump drainage fluctuated annually between +20 cm and -60 cm relative to ground Level. This precise management was facilitated by the high hydraulic conductivity (K) of the humified peat (1.1 x 10(-5) m s(-1)) below around 60 cm depth. However, during one week of intermittent pumping, as much as 50 g ha(-1) dissolved P entered the pumped ditch. Summer. rainfall events and autumn reflooding also triggered P losses. The P Losses were attributed to the low P sorption capacity (217 mg kg(-1)) of the saturated peat below 60 cm, combined with its high K and the reductive dissolution of Fe bound P.
Resumo:
Nonylphenol polyethoxylates (NPEOs) are surfactants found ubiquitously in the environment due to widespread industrial and domestic use. Biodegradation of NPEOs produces nonylphenol (NP), an endocrine disruptor. Sewage sludge application introduces NPEOs and NP into soils, potentially leading to accumulation in soils and crops. We examined degradation of NP and nonyl phenol-12-ethoxylate (NP12EO) in four soils. NP12EO degraded rapidly (initial half time 0.3-5 days). Concentrations became undetectable within 70-90 days, with a small increase in NP concentrations after 30 days. NP initially degraded quickly (mean half time 11.5 days), but in three soils a recalcitrant fraction of 26-35% remained: the non-degrading fraction may consist of branched isomers, resistant to biodegradation. Uptake of NP by bean plants was also examined. Mean bioconcentration factors for shoots and seeds were 0.71 and 0.58, respectively. Removal of NP from the soil by plant uptake was negligible (0.01-0.02% of initial NP). Root concentrations were substantially higher than shoot and seed concentrations. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Across Europe, elevated phosphorus (P) concentrations in lowland rivers have made them particularly susceptible to eutrophication. This is compounded in southern and central UK by increasing pressures on water resources, which may be further enhanced by the potential effects of climate change. The EU Water Framework Directive requires an integrated approach to water resources management at the catchment scale and highlights the need for modelling tools that can distinguish relative contributions from multiple nutrient sources and are consistent with the information content of the available data. Two such models are introduced and evaluated within a stochastic framework using daily flow and total phosphorus concentrations recorded in a clay catchment typical of many areas of the lowland UK. Both models disaggregate empirical annual load estimates, derived from land use data, as a function of surface/near surface runoff, generated using a simple conceptual rainfall-runoff model. Estimates of the daily load from agricultural land, together with those from baseflow and point sources, feed into an in-stream routing algorithm. The first model assumes constant concentrations in runoff via surface/near surface pathways and incorporates an additional P store in the river-bed sediments, depleted above a critical discharge, to explicitly simulate resuspension. The second model, which is simpler, simulates P concentrations as a function of surface/near surface runoff, thus emphasising the influence of non-point source loads during flow peaks and mixing of baseflow and point sources during low flows. The temporal consistency of parameter estimates and thus the suitability of each approach is assessed dynamically following a new approach based on Monte-Carlo analysis. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Application of organic materials to soils to enhance N immobilization into microbial biomass, thereby reducing inorganic N concentrations, was studied as a management option to accelerate the reestablishment of the native vegetation on abandoned arable fields on sandy soils the Kiskunsag National Park, Hungary. Sucrose and sawdust were used at three different topographic sites over 4 years. N availability and extractable inorganic N concentrations were significantly reduced in all sites. Soil microbial biomass C and microbial biomass N increased significantly following C additions, but the microbial C to microbial N ratio remained unaffected. It is concluded that the combined application of the rapidly utilized C source (sucrose) promoted N immobilization, whereas the addition of the slowly utilized C source (sawdust) maintained the elevated microbial biomass C and microbial biomass N in the field.
Resumo:
We have examined the contributions sucrose and sawdust make to the net immobilization of inorganic soil N and assimilation of both C and N into microbial biomass when they are used as part of a restoration plan to promote the establishment of indigenous vegetation on abandoned agricultural fields on the Central Hungarian Plain. Both amendments led to net N immobilization. Sucrose addition also led to mobilization of N from the soil organic N pool and its immobilization into microbial biomass, whereas sawdust addition apparently immobilized soil N into a non-biomass compartment or a biomass component that was not detected by the conventional biomass N assay (CHCl3 fumigation and extraction). This suggests that the N was either cycled through the biomass, but not immobilized within it, or that it was immobilized in a protected biomass fraction different to the fraction into which N was immobilized in response to sucrose addition.
Resumo:
A method is presented which allows thermal inertia (the soil heat capacity times the square root of the soil thermal diffusivity, C(h)rootD(h)), to be estimated remotely from micrometeorological observations. The method uses the drop in surface temperature, T-s, between sunset and sunrise, and the average night-time net radiation during that period, for clear, still nights. A Fourier series analysis was applied to analyse the time series of T-s . The Fourier series constants, together with the remote estimate of thermal inertia, were used in an analytical expression to calculate diurnal estimates of the soil heat flux, G. These remote estimates of C(h)rootD(h) and G compared well with values derived from in situ sensors. The remote and in situ estimates of C(h)rootD(h) both correlated well with topsoil moisture content. This method potentially allows area-average estimates of thermal inertia and soil heat flux to be derived from remote sensing, e.g. METEOSAT Second Generation, where the area is determined by the sensor's height and viewing angle. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Nutrient cycles link agricultural systems to their societies and surroundings; inputs of nitrogen and phosphorus in particular are essential for high crop yields, but downstream and downwind losses of these same nutrients diminish environmental quality and human well-being. Agricultural nutrient balances differ substantially with economic development, from inputs that are inadequate to maintain soil fertility in parts of many developing countries, particularly those of sub-Saharan Africa, to excessive and environmentally damaging surpluses in many developed and rapidly growing economies. National and/or regional policies contribute to patterns of nutrient use and their environmental consequences in all of these situations. Solutions to the nutrient challenges that face global agriculture can be informed by analyses of trajectories of change within, as well as across, agricultural systems.