999 resultados para Metais - Propriedades mecanicas
Resumo:
In this work we report a systematic study on the influence of the chemical nature of silver precursors on the formation of glass-ceramics from oxide glasses. Thermal, structural and optical properties were analyzed as a function of the glass composition. Controlled crystallization was achieved by thermal treatment of the samples above glass transition. The influence of time of treatment on both nanoparticle growth and optical properties of the samples was studied by transmission electron microscopy and UV-Vis spectroscopy, respectively. Results showed that only glasses containing AgCl and AgNO3 led to glass-ceramics growth after thermal treatment.
Resumo:
The increasing incidence of microbial infections, high toxicity, and high level of resistance associated with conventional antibiotics has created a need for new drugs. Antimicrobial peptides (AMPs) constitute a promising alternative and/or an important source of knowledge given their ability to inhibit the growth and/or to kill bacteria, fungi, parasites and/or viruses through mechanisms of action different from those of non-peptide drugs. This review focused on this important class of organic compounds that includes hemocidins resulting from hemoglobin proteolysis in vivo and in vitro or from chemical synthesis, subject of research in foreign and Brazilian laboratories.
Resumo:
Previous studies have verified that free radicals such as quinone moieties in organic matter participate in the redox reactions in natural systems. These functional groups were positively correlated with the increase in aromaticity and hydrophobicity of the humic substances. As an alternative to relatively complex and expensive spectroscopic methods, the redox properties of the humic substances, determined by potentiometric titrations, have been used to evaluate organic carbon stability in soil and sediments. The present study aimed to perform organic matter fractionation and isolation of humic substances from deep oceans in different isobaths (750; 1,050; 1,350; 1,650; 1,950 m) to determine their redox properties by iodimetric titrations under an inert atmosphere and specified conditions of pH and ionic strength. Sediment samples were collected to the North and South of platforms of petroleum exploration located in the North of Rio de Janeiro State, Brazil. Fractions of organic carbon and redox properties of humic substances varied with origin and depth of the samples and with position North and South of the petroleum exploration area.
Resumo:
Numerous functional biomolecules are associated with metals, i.e. the metallobiomolecules; more specifically, some are dependent on transition metals required for several crucial biological roles. Nevertheless, their names can lead to ambiguous interpretations concerning the properties and performances of this group of biological molecules. Their etymology may be useful by providing a more perceptive insight into their features. However, etymology can lead to incongruous conclusions, requiring an especially careful approach to prevent errors. Examples illustrating these subjects shall be examined.
Resumo:
A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni - MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO4)2.H2O) and lanthanum sulfate (La2(SO4)3.H2O) as the major recovered components. Iron was recovered as Fe(OH)3 and FeO. Manganese was obtained as Mn3O4.The recovered Ni(OH)2 and Co(OH)2 were subsequently used to synthesize LiCoO2, LiNiO2 and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques.
Resumo:
We investigated the effect of adding titanium dioxide nanoparticles (TiO2) to ethylene vinyl acetate (EVA) copolymer, containing 28% vinyl acetate groups, on the crystallinity and miscibility of the copolymer. Films of EVA/TiO2 containing 0.25%-1% TiO2, relative to the total weight of EVA, were prepared from their solution. The obtained films were characterized by X-ray diffraction, low-field nuclear magnetic resonance, and differential scanning calorimetry. The addition of TiO2 to the EVA copolymer was proved to cause changes in the crystallinity and mobility of the polymer chains of EVA, due to new intermolecular interactions and nanostructure organization.
Resumo:
Analytical Chemistry books lack a clear link between thermodynamic and equilibrium approaches involving acids and bases. In this work, theoretical calculations were performed to search for these relations. An excellent relationship was found between difference in Gibbs free energy, ∆G of acid dissociation reaction and ∆G of hydrolysis reaction of the corresponding conjugate base. A relationship between ∆G of hydrolysis reaction of conjugate acids and their corresponding atomic radius was also identified, showing that stability plays an important role in hydrolysis reactions. Finally, the importance of solvation in acid/base behavior was demonstrated when comparing the corresponding theoretical and experimental ∆G´s.
Resumo:
In rivers, sediments act as sinks for retaining contaminants. This study evaluated the influence of sediment humic substances (HS) on the bioavailability of metals. The levels of metals in sediments and HS indicated that most are complexed with HS. Characterization of HS showed a high degree of humification. The complexation capacity of HS for metals established the affinity order:Pb2+
Resumo:
Structural and electronic properties of titanium dioxide (TiO2) thin films, in anatase phase, were investigated using periodic 2D calculations at density functional theory (DFT) level with B3LYP hybrid functional. The Grimme dispersion correction (DFT/B3LYP-D*) was included to better reproduce structural features. The electronic properties were discussed based on the band gap energy, and proved dependent on surface termination. Surface energies ranged from 0.80 to 2.07 J/m², with the stability orders: (101) > (100) > (112) > (110) ~ (103) > (001) >> (111), and crystal shape by Wulff construction in accordance with experimental data.
Resumo:
This article describes the development of a new catalytic reactor designed to operate with nanoparticle-embedded polymer thin films. Stabilization of metal nanoparticles in films that serve as catalysts in organic reactions is relatively new; therefore, the development of reactors to facilitate their use is necessary. We describe in detail the preparation of the GDCR reactor-type "dip catalyst" and its evaluation in the Suzuki - Miyaura cross-coupling reaction of phenylboronic acid and 4-bromoanisole catalyzed by palladium nanoparticle-embedded cellulose acetate thin film (CA/PD(0)). Compared with earlier prototypes, GDCR reactor showed excellent results when operating with CA/PD(0) thin films.
Resumo:
Precise surface area is needed for accurate characterization of self-assembled monolayers (SAMs) on metallic surfaces. The aim of this manuscript was to emphasize that miscalculation of surface area is the major source of errors in SAM electrochemical characterization. Limitations are discussed and recommendations given for beginners in analyses of SAM functionalized electrodes. The electrochemical measurements and examples were based on bare gold electrode immobilized with dodecanethiol. The degree of compression of the monolayer properties of formation and reproducibility of the electrochemical response depends on roughness factor, with values closer to the unit being better.
Resumo:
This paper describes the evaluation of simple and fast solubilization methods for the determination of Ca, Mg, and K in glycerin samples from biodiesel production by atomic spectrometry. The solubilization in water was compared with two other methods: solubilization in formic acid and solubilization in ethanol. Using solubilization in water, determination of the three analytes was possible; the values of limits of detection for Ca, K, Mg were 0.31, 0.06, and 0.16 mg kg−1, respectively. Because no adequate reference material was available, the accuracy was evaluated by assessing the recoveries tests with both solubilization methods; the evaluation ranged from 90% to 115%, with values of relative standard deviation >8%, indicating good accuracy of the measure. Four crude glycerin samples obtained from biodiesel plants of Rio Grande do Sul were analyzed after treatment with the different methods of solubilization, and the obtained results of Ca, Mg, and K concentration were in agreement with the values obtained from both solubilization methods. Therefore, solubilization in water is concluded to be a simpler, faster, and viable method for sample preparation of glycerin.
Resumo:
The aim of this study was to investigate the effect of surface treatment on the properties of waste piassava fiber with the goal of aggregating additional business value. The fiber surface was subjected to four different treatments. In the present work, it was found that washing the fibers with water partially removed impurities from the surface rendering it rougher. Alkaline treatment removed impurities from the surface, hemicellulose and lignin, improving the flexibility of the fibers. Increasing the concentration of washing agents, times and temperature of treatment promoted intense defibrillation on the fiber surface, reducing its strength.
Resumo:
Bleached eucalypt kraft pulps are widely used in print and writing (P&W) and tissue paper manufacture. Among the quality requirements of pulp for these papers, xylan content has been controversial. The objective of this study was to evaluate the influence of xylan content on bleachability, hygroscopic, physic-mechanical and optical properties of the pulp. In this study industrial unbleached eucalyptus kraft pulp (15.6% xylans) treated with different NaOH loads to change its xylan content was used. Subsequently, pulps were bleached by the ODHT(EP)D sequence to achieve 90% ISO of brightness, then refined and submitted to hygroscopic, physicomechanical and optical tests. NaOH treatments decreased the xylan content to 14.5-5.9% using NaOH loads of 10-70 g L-1. Pulp bleachability was not significantly affected by xylan content decrease. The decrease in xylan content negatively affected the water retention value and Klemm capillarity of the pulp, while water absorption capacity was positively affected. Tensile and tear index were negatively influenced by the reduction in xylan content, whereas bulk and light scattering coefficient increased.
Resumo:
Chlorine, one of the most frequent elements on earth and most important key chemicals, is indispensable in the syllabi of school and university courses in Inorganic Chemistry. However, its toxicity and high volatility preclude experimental demonstration of its properties in secondary and high schools and most university labs. This paper summarises the industrial role of chlorine and presents miniaturised experiments demonstrating some of the processes used in Industrial Inorganic Chemistry. Furthermore, experiments illustrating important concepts of Inorganic Chemistry such as Ion Bonding and Molecular Orbital Theory are describe.