940 resultados para Memórias autobiográficas voluntárias
Resumo:
Este trabalho é uma discussão sobre as funções sociais da História e da Memória. Para tanto, foi pensado diante do 80º aniversário da Revolução de 1930, marco da (re)fundação da capital paraibana, pois esta memória e a produção historiográfica a respeito do tema nos é bastante instigante. Falar de João Pessoa, seja da cidade, seja do indivíduo; no que se refere aos episódios de 1930, é tocar em um assunto bastante passional, onde chegar a um consenso é algo extremamente improvável. O objetivo deste trabalho é problematizar as funções sociais da História e suas utilizações, notadamente por meio do nosso objeto de estudo, buscando contribuir para a compreensão de como a memória e a escrita da História são frutos do trabalho constante das sociedades que as engendram. Estudar sobre a produção da memória e da historiografia bem como a função da escrita da História sobre esses episódios, entendendo-os como espaços específicos de disputas, notadamente sobre os embates de memórias nos últimos dez anos, trazendo novas reflexões sobre as funções sociais destas memórias
Resumo:
This research has as object of study the city of Caicó, Rio Grande do Norte State, between the middle part of the decade of 1920 and the beginning of 1930. It intended to perceive the projects thought to the city of Caicó as well as the challenges due to the new ideas of modernity that were circulating around the contemporary world. So it consists in an important historical exercise about the relation between history and space in to the extent that itself comes to surface a city deals by diverse angles whose perspectives can be read in several "fragments of memory", such as newspapers, trials-crime, reports, memories, books, etc., those show the tension between the traditional and the modern way of life one. In this way, it´s tried to transform the space, giving it a new reference, inspired in what occurs in the Brazilian big cities and around the world, through the use of the techniques, of the electricity, of the movies, of the press, cars, medicine and so on. At the same time in that is necessary-itself deal with the permanencies such as the old manners and the droughts and theirs "flagellated" people. Therefore, it is in this difficult phase that is tried legitimize the city of Caicó as the "Capital of the Seridó", in the threshold between the refusal and the seduction
Resumo:
Brain oscillation are not completely independent, but able to interact with each other through cross-frequency coupling (CFC) in at least four different ways: power-to-power, phase-to-phase, phase-to-frequency and phase-to-power. Recent evidence suggests that not only the rhythms per se, but also their interactions are involved in the execution of cognitive tasks, mainly those requiring selective attention, information flow and memory consolidation. It was recently proposed that fast gamma oscillations (60 150 Hz) convey spatial information from the medial entorhinal cortex to the CA1 region of the hippocampus by means of theta (4-12 Hz) phase coupling. Despite these findings, however, little is known about general characteristics of CFCs in several brain regions. In this work we recorded local field potentials using multielectrode arrays aimed at the CA1 region of the dorsal hippocampus for chronic recording. Cross-frequency coupling was evaluated by using comodulogram analysis, a CFC tool recently developted (Tort et al. 2008, Tort et al. 2010). All data analyses were performed using MATLAB (MathWorks Inc). Here we describe two functionally distinct oscillations within the fast gamma frequency range, both coupled to the theta rhythm during active exploration and REM sleep: an oscillation with peak activity at ~80 Hz, and a faster oscillation centered at ~140 Hz. The two oscillations are differentially modulated by the phase of theta depending on the CA1 layer; theta-80 Hz coupling is strongest at stratum lacunosum-moleculare, while theta-140 Hz coupling is strongest at stratum oriens-alveus. This laminar profile suggests that the ~80 Hz oscillation originates from entorhinal cortex inputs to deeper CA1 layers, while the ~140 Hz oscillation reflects CA1 activity in superficial layers. We further show that the ~140 Hz oscillation differs from sharp-wave associated ripple oscillations in several key characteristics. Our results demonstrate the existence of novel theta-associated high-frequency oscillations, and suggest a redefinition of fast gamma oscillations
Resumo:
Episodic memory refers to the recollection of what, where and when a specific event occurred. Hippocampus is a key structure in this type of memory. Computational models suggest that the dentate gyrus (DG) and the CA3 hippocampal subregions are involved in pattern separation and the rapid acquisition of episodic memories, while CA1 is involved in memory consolidation. However there are few studies with animal models that access simultaneously the aspects ‗what-where-when . Recently, an object recognition episodic-like memory task in rodents was proposed. This task consists of two sample trials and a test phase. In sample trial one, the rat is exposed to four copies of an object. In sample trial two, one hour later, the rat is exposed to four copies of a different object. In the test phase, 1 h later, two copies of each of the objects previously used are presented. One copy of the object used in sample trial one is located in a different place, and therefore it is expected to be the most explored object.However, the short retention delay of the task narrows its applications. This study verifies if this task can be evoked after 24h and whether the pharmacological inactivation of the DG/CA3 and CA1 subregions could differentially impair the acquisition of the task described. Validation of the task with a longer interval (24h) was accomplished (animals showed spatiotemporal object discrimination and scopolamine (1 mg/kg, ip) injected pos-training impaired performance). Afterwards, the GABA agonist muscimol, (0,250 μg/μl; volume = 0,5 μl) or saline were injected in the hippocampal subregions fifteen minutes before training. Pre-training inactivation of the DG/CA3 subregions impaired the spatial discrimination of the objects (‗where ), while the temporal discrimination (‗when ) was preserved. Rats treated with muscimol in the CA1 subregion explored all the objects equally well, irrespective of place or presentation time. Our results corroborate the computational models that postulate a role for DG/CA3 in spatial pattern separation, and a role for CA1 in the consolidation process of different mnemonic episodes
Resumo:
Lucid dreaming (LD) is a mental state in which the subject is aware of being dreaming while dreaming. The prevalence of LD among Europeans, North Americans and Asians is quite variable (between 26 and 92%) (Stepansky et al., 1998; Schredl & Erlacher, 2011; Yu, 2008); in Latin Americans it is yet to be investigated. Furthermore, the neural bases of LD remain controversial. Different studies have observed that LD presents power increases in the alpha frequency band (Tyson et al., 1984), in beta oscillations recorded from the parietal cortex (Holzinger et al., 2006) and in gamma rhythm recorded from the frontal cortex (Voss et al., 2009), in comparison with non-lucid dreaming. In this thesis we report epidemiological and neurophysiological investigations of LD. To investigate the epidemiology of LD (Study 1), we developed an online questionnaire about dreams that was answered by 3,427 volunteers. In this sample, 56% were women, 24% were men and 20% did not inform their gender (the median age was 25 years). A total of 76.5% of the subjects reported recalling dreams at least once a week, and about two-thirds of them reported dreaming always in the first person, i.e. when the dreamer observes the dream from within itself, not as another dream character. Dream reports typically depicted actions (93.3%), known people (92.9%), sounds/voices (78.5%), and colored images (76.3%). The oneiric content was related to plans for upcoming days (37.8%), and memories of the previous day (13.8%). Nightmares were characterized by general anxiety/fear (65.5%), feeling of being chased (48.5%), and non-painful unpleasant sensations (47.6%). With regard to LD, 77.2% of the subjects reported having experienced LD at least once in their lifetime (44.9% reported up to 10 episodes ever). LD frequency was weakly correlated with dream recall frequency (r = 0.20, p <0.001) and was higher in men (χ2=10.2, p=0.001). The control of LD was rare (29.7%) and inversely correlated with LD duration (r=-0.38, p <0.001), which is usually short: to 48.5% of the subjects, LD takes less than 1 minute. LD occurrence is mainly associated with having sleep without a fixed time to wake up (38.3%), which increases the chance of having REM sleep (REMS). LD is also associated with stress (30.1%), which increases REMS transitions into wakefulness. Overall, the data suggest that dreams and nightmares can be evolutionarily understood as a simulation of the common situations that happen in life, and that are related to our social, psychological and biological integrity. The results also indicate that LD is a relatively common experience (but not recurrent), often elusive and difficult to control, suggesting that LD is an incomplete stationary stage (or phase transition) between REMS and wake state. Moreover, despite the variability of LD prevalence among North Americans, Europeans and Asians, our data from Latin Americans strengthens the notion that LD is a general phenomenon of the human species. To further investigate the neural bases of LD (Study 2), we performed sleep recordings of 32 non-frequent lucid dreamers (sample 1) and 6 frequent lucid dreamers (sample 2). In sample 1, we applied two cognitive-behavioral techniques to induce LD: presleep LD suggestion (n=8) and light pulses applied during REMS (n=8); in a control group we made no attempt to influence dreaming (n=16). The results indicate that it is quite difficult but still possible to induce LD, since we could induce LD in a single subject, using the suggestion technique. EEG signals from this one subject exhibited alpha (7-14 Hz) bursts prior to LD. These bursts were brief (about 3s), without significant change in muscle tone, and independent of the presence of rapid eye movements. No such bursts were observed in the remaining 31 subjects. In addition, LD exhibited significantly higher occipital alpha and right temporo-parietal gamma (30-50 Hz) power, in comparison with non-lucid REMS. In sample 2, LD presented increased frontal high-gamma (50-100 Hz) power on average, in comparison with non-lucid REMS; however, this was not consistent across all subjects, being a clear phenomenon in just one subject. We also observed that four of these volunteers showed an increase in alpha rhythm power over the occipital region, immediately before or during LD. Altogether, our preliminary results suggest that LD presents neurophysiological characteristics that make it different from both waking and the typical REMS. To the extent that the right temporo-parietal and frontal regions are related to the formation of selfconsciousness and body internal image, we suggest that an increased activity in these regions during sleep may be the neurobiological mechanism underlying LD. The alpha rhythm bursts, as well as the alpha power increase over the occipital region, may represent micro-arousals, which facilitate the contact of the brain during sleep with the external environment, favoring the occurrence of LD. This also strengthens the notion that LD is an intermediary state between sleep and wakefulness
Resumo:
Hebb postulated that memory could be stored thanks to the synchronous activity of many neurons, building a neural assembly. Knowing of the importance of the hippocampal structure to the formation of new explicit memories, we used electrophysiological recording of multiple neurons to access the relevance of rate coding from neural firing rates in comparison to the temporal coding of neural assemblies activity in the consolidation of an aversive memory in rats. Animals were trained at the discriminative avoidance task using a modified elevated plus-maze. During experimental sessions, slow wave sleep periods (SWS) were recorded. Our results show an increase in the identified neural assemblies activity during post-training SWS, but not for the neural firing rate. In summary, we demonstrate that for this particular task, the relevant information needed for a proper memory consolidation lies within the temporal patters of synchronized neural activity, not in its firing rate
Resumo:
The processing of spatial and episodic information during memory tasks depends on hippocampal theta oscillations. In the present study, I investigated the relationship between theta power and choice selection during spatial decision-making. I recorded local field potentials from the CA1 region of rats retrieving reward locations in a 4-arm maze. In trained but not in naïve animals, I observed a significant increase in theta power during decision-making, which could not be explained by changes in locomotion speed. Furthermore, a Bayesian decoder based on theta power predicted choice outcomes in speed-matched trials. The decoding time course revealed that performance increased above chance before the decision moment exclusively for theta power, remaining flat for other frequency bands. These results occurred for trained animals, but no significant prediction could be made for naïve animals. Altogether, the data support a mnemonic function of theta rhythm during spatial decision-making, indicating that these oscillations correlate with the retrieval of memories required for successful decisions
Resumo:
In the behavioral paradigm of discriminative avoidance task, both short and long-term memories have been extensively investigated with behavioral and pharmacological approaches. The aim of the present study was to evaluate, using the abovementioned model, the hippocampal expression of zif-268 - a calcium-dependent immediate early gene involved with synaptic plasticity process - throughout several steps of memory formation, such as acquisition, evocation and extiction. The behavioral apparatus consisted of a modified elevaated plus-maze, with their enclosed arms disposed in "L". A pre-exposure to the maze was made with the animal using all arms enclosed, for 30 minutes, followed by training and test, during 10 minutes each. The between sections interval was 24h. During training, aversive stimuli (bright light and loud noise) were actived whenever the animals entered one of the enclosed armas (aversive arm). Memory acquisiton, retention and extinction were evaluated by the percentage of the total time spent exploring the aversive arm. The parameters evaluated (time spent in the arms and total distance traveled) were estimated with an animal tracking software (Anymaze, Stoelting, USA). Learning during training was estimated by the decrease of the time spent exploring the aversive arm. One hour after the beginning of each section, animals were anaesthetized with sodium-thiopental (i.p.) and perfused with 0.9% heparinized saline solution followed by 4% paraformaldehyde. Brains were cryoprotected with 20% sucrose, separeted in three blocks and frozen. The middle block, containing the hippocampus, was sectioned at 20 micro meters in the coronal plane and the resutant sections were submitted to zif-268 immunohistochemistry. Our results show an increased expression of zif-268 in the dentate gyrus (DG) during the evocation and extinction stages. There is a distinct participation of the DG during the memory evocation, but not during its acquisition. Inaddition, all hippocampal regions (CA1, CA3 and DG) presented an increased zif-268 expression during the process of extinction.
Resumo:
The ability to predict future rewards or threats is crucial for survival. Recent studies have addressed future event prediction by the hippocampus. Hippocampal neurons exhibit robust selectivity for spatial location. Thus, the activity of hippocampal neurons represents a cognitive map of space during navigation as well as during planning and recall. Spatial selectivity allows the hippocampus to be involved in the formation of spatial and episodic memories, including the sequential ordering of events. On the other hand, the discovery of reverberatory activity in multiple forebrain areas during slow wave and REM sleep underscored the role of sleep on the consolidation of recently acquired memory traces. To this date, there are no studies addressing whether neuronal activity in the hippocampus during sleep can predict regular environmental shifts. The aim of the present study was to investigate the activity of neuronal populations in the hippocampus during sleep sessions intercalated by spatial exploration periods, in which the location of reward changed in a predictable way. To this end, we performed the chronic implantation of 32-channel multielectrode arrays in the CA1 regions of the hippocampus in three male rats of the Wistar strain. In order to activate different neuronal subgroups at each cycle of the task, we exposed the animals to four spatial exploration sessions in a 4-arm elevated maze in which reward was delivered in a single arm per session. Reward location changed regularly at every session in a clockwise manner, traversing all the arms at the end of the daily recordings. Animals were recorded from 2-12 consecutive days. During spatial exploration of the 4-arm elevated maze, 67,5% of the recorded neurons showed firing rate differences across the maze arms. Furthermore, an average of 42% of the neurons showed increased correlation (R>0.3) between neuronal pairs in each arm. This allowed us to sort representative neuronal subgroups for each maze arm, and to analyze the activity of these subgroups across sleep sessions. We found that neuronal subgroups sorted by firing rate differences during spatial exploration sustained these differences across sleep sessions. This was not the case with neuronal subgroups sorted according to synchrony (correlation). In addition, the correlation levels between sleep sessions and waking patterns sampled in each arm were larger for the entire population of neurons than for the rate or synchrony subgroups. Neuronal activity during sleep of the entire neuronal population or subgroups did not show different correlations among the four arm mazes. On the other hand, we verified that neuronal activity during pre-exploration sleep sessions was significantly more similar to the activity patterns of the target arm than neuronal activity during pre-exploration sleep sessions. In other words, neuronal activity during sleep that precedes the task reflects more strongly the location of reward than neuronal activity during sleep that follows the task. Our results suggest that neuronal activity during sleep can predict regular environmental changes
Resumo:
In most cultures, dreams are believed to predict the future on occasion. Several neurophysiological studies indicate that the function of sleep and dreams is to consolidate and transform memories, in a cyclical process of creation, selection and generalization of conjectures about the reality. The aim of the research presented here was to investigate the possible adaptative role of anticipatory dreams. We sought to determine the relationship between dream and waking in a context in which the adaptive success of the individual was really at risk, in order to mobilize more strongly the oneiric activity. We used the entrance examination of the Federal University of Rio Grande do Norte (UFRN) as a significant waking event in which performance could be independently quantified. Through a partnership with UFRN, we contacted by e-mail 3000 candidates to the 2009 examination. In addition, 150 candidates were approached personally. Candidates who agreed to participate in the study (n = 94) completed questionnaires specific to the examination and were asked to describe their dreams during the examinaton period. The examination performance of each candidate in the entrance examination was provided by the UFRN to the researcher. A total of 45 participants reported dreams related to the examination. Our results show a positive correlation between performance on the examination and anticipatory dreams with the event, both in the comparison of performance on objective and discursive, and in final approval (in the group that not dreamed with the exam the rate of general approval, 22,45%, was similar to that found in the selection process as a whole, 22.19%, while for the group that dreamed with the examination that rate was 35.56%). The occurrence of anticipatory dreams reflectes increased concern during waking (psychobiological mobilization) related to the future event, as indicated by higher scores of fear and apprehension, and major changes in daily life, in patterns of mood and sleep, in the group that reported testrelated dreams. Furthermore, the data suggest a role of dreams in the determination of environmentally relevant behavior of the vigil, simulating possible scenarios of success (dream with approval) and failure (nightmares) to maximize the adaptive success of the individual
Resumo:
Treatment of major depression, posttraumatic stress disorder and other psychopathologies with antidepressants can be associated with improvement of the cognitive deficits related to these disorders. Although the mechanisms of these effects are not completely elucidated, alterations in extinction of aversive memories are believed to be present in these psychopathologies. Moreover, researches with laboratory animals usually focus on male subjects, and we have recently verified that extinction of an aversive task is reduced in female rats when compared to males. In the present study, female rats were long-term treated with clinically used antidepressants (fluoxetine, nortriptyline or mirtazapine) and tested in the plus-maze discriminative avoidance and forced swimming tests in order to evaluate learning, memory, extinction, anxiety and depression-related behaviors. All groups learned the task, but learning was somewhat faster in nortriptyline and mirtazapine-treated animals . Task retrieval was also showed by all experimental groups. Chronic treatment with fluoxetine, but not with the other antidepressants, increased extinction of the discriminative task. In the forced swimming test, animals treated with fluoxetine and mirtazapine showed decreased immobility duration. In conclusion, antidepressants interfere with learning and female rats treated with fluoxetine presented increased extinction of the aversive memory task. On the other hand, both fluoxetine and mirtazapine were effective in the forced swimming test, suggesting dissociation between the antidepressant effects and the extinction of aversive memories
Resumo:
Memory and anxiety are related phenomena. Several evidences suggest that anxiety is fundamental for learnining and may facilitate or impair the memory formation process depending of the context. The majority of animal studies of anxiety and fear use only males as experimental subjects, while studies with females are rare in the literature. However, the prevalence in phobic and anxiety disorders is greater in women than in men. Moreover, it is known that gender maybe influence benzodiazepine effects, the classic drugs used for anxiety disorders treatment. In this respect, to further investigate if fear/anxiety aspects related to learning in female subjects would contribute to the study of phobic and anxiety disorders and their relationship with learning/memory processes, the present work investigates (a) the effects of benzodiazepine diazepam on female rats performance in a aversive memory task that assess concomitantly anxiety/emotionality, as the interaction between both; (b) the influence of estrous cycle phases of female rats on diazepam effects at aversive memory and anxiety/emotionality, and the interaction between both and (c) the role of hormonal fluctuations during estrous cycle phases in absence of diazepam effects in proestrus, because female rats in this phase received or not mifepristone, the antagonist of progesterone receptor, previously to the diazepam treatment. For this purpose, the plus maze discriminative avoidance task, previously validated for studies of anxiety concomitantly to learning/memory, was used. The apparatus employed is an adaptation of a conventional plus maze, with two opens arms and two closed arms, one of which presenting aversive stimulation (noise and light). The parameters used were: time in non-aversive arm compared to time in aversive and percentage of time in aversive arm on several temporal divisions, in order to evaluate memory; percentage of time in open arms, risk assessment, head dipping and end exploring to evaluate anxiety ; and distance traveled for locomotion. In experiment I, we found anxiolytic effect of diazepam only for 4 mg/kg dose, however the amnestic effect appear at a dose of 2 mg/kg. In second experiment, rats were divided in groups according estrous cycle phase (metaestrus/diestrus, proestrus e estrus). In this experiment, when we considered estrous cycle phase or diazepam treatment, the results did not demonstrate any differences in anxiety/emotionality parameters. The amnestic effects of diazepam occur in female rats in metestrus/diestrus and estrus and is absent in proestrous rats. Proestrous female rats that received mifepristone exhibited the amnestic effect of diazepam and also anxiolytic effects, that it was not previously observed in this dose. The results have demonstrated dissociation of anxiolytic and amnestic diazepam effects, not previously observed in males; the absence of amnestic effect of diazepam in proestrous phase; and the possible role of progesterone in aversive memory over diazepam effect, because the mifepristone, associated with diazepam, caused amnestic effect in proestrus
Resumo:
Neuroscience is on a rise of discoveries. Its wide interdisciplinary approach facilitates a more complex understanding of the brain, covering various areas in depth. However, many phenomena that fascinate human kind are far from being fully elucidated, such as the formation of memories and sleep. In this study we investigated the role of the dopaminergic system in the process of memory consolidation and modulation of the phases of sleep-wake cycle. We used two groups of animals: wildtype mice and hiperdopaminergic mice, heterozygous for the gene encoding the dopamine transporter protein. We observed in wild-type mice that the partial blockade of the D2 dopamine receptor by the drug haloperidol caused deficits in memory consolidation for object recognition, as well as a significant reduction in the duration of rapid eye movement sleep (REM). We also found a mnemonic deficit without pharmacological intervention in hiperdopaminergic animals; this deficit was reversed with haloperidol. The results suggest that dopamine plays a key role in memory consolidation for object recognition. The data also support a functional relationship between the dopaminergic system and the modulation of REM sleep
Resumo:
GABAergic neurotransmission has been implicated in many aspects of learning and memory, as well as mood and anxiety disorders. The amygdala has been one of the major focuses in this area, given its essential role in modulating emotionally relevant memories. However, studies with male subjects are still predominant in the field. Here we investigated the consequences for an aversive memory of enhancing or decreasing GABAergic transmission in the basolateral nucleus of the amygdala (BLA). Wistar female rats were trained in the plus-maze discriminative avoidance task, in which they had to learn to avoid one of the enclosed arms where an aversive stimulus consisting of a bright light and a loud noise was given (day 1). Fifteen minutes before the test session (day 2) animals received 0,2 μL infusions of either saline solution, the GABAergic agonist muscimol (0,05 mg/ml), or the GABAergic antagonist bicuculine (0,025 mg/ml) bilaterally intra-BLA. On the test day, females in proestrous or estrous presented adequate retrieval and did not extinguish the task, while females in metestrous or diestrous presented impaired retrieval. In the first group, muscimol infusion impaired retrieval and bicuculline had no effect, suggesting naturally low levels of GABAergic transmission in the BLA of proestrous and estrous females. In the second group, muscimol infusion had no effect and bicuculline reversed retrieval impairment, suggesting naturally high levels of GABAergic transmission in the BLA of metestrous and diestous females. Additionally, proestrous and estrous females presented higher anxiety levels compared to metestrous and diestrous females, which could explain better performance of this group. On the other hand, BLA GABAergic system did not interfere with the innate fear response because drug infusions had no effect in anxiety. Thus, retrieval alterations caused by the GABAergic drugs were probably related specifically to memory processes
Resumo:
There is a known positive effect of nocturnal sleep for brain plasticity and the consolidation of declarative and procedural memories, as well as for the facilitation of insight in problem solving. However, a possible pro-mnemonic effect of daytime naps after learning is yet to be properly characterized. The goal of this project was to evaluate the influence of daytime naps on learning among elementary and middleschool students, measuring the one-day (acute), and semester-long (chronic) effects of post-learning naps on performance. In the Acute Day-Nap condition, the elementary students were exposed to a class and then randomly divided into three groups: Nap (N), Game-based English Class (GBEC) and Traditional English Class (TEC). There were 2 multiple-choice follow-up tests to evaluate students performance in the short and long runs. In the short run, the N group outperformed the other two groups; and such tendency was maintained in the long run. In the chronic condition, the middle-school students were randomly separated into two groups: Nap (N) and Class (C) and were observed during one academic term. The N group had increased school performance in relation to the C group. In the statistical analyses, independent t-tests were applied considering the scores significant when p<0,05, expressed in terms of average ± average standard error. Results can be interpreted as an indication that a single daytime nap opportunity is not enough to ensure learning benefits. Therefore, more research is needed in order to advocate in favor of a daytime nap as a pedagogical means of promoting enhanced school performance