638 resultados para Melastoma-affine Melastomataceae
Resumo:
Neural networks can be regarded as statistical models, and can be analysed in a Bayesian framework. Generalisation is measured by the performance on independent test data drawn from the same distribution as the training data. Such performance can be quantified by the posterior average of the information divergence between the true and the model distributions. Averaging over the Bayesian posterior guarantees internal coherence; Using information divergence guarantees invariance with respect to representation. The theory generalises the least mean squares theory for linear Gaussian models to general problems of statistical estimation. The main results are: (1)~the ideal optimal estimate is always given by average over the posterior; (2)~the optimal estimate within a computational model is given by the projection of the ideal estimate to the model. This incidentally shows some currently popular methods dealing with hyperpriors are in general unnecessary and misleading. The extension of information divergence to positive normalisable measures reveals a remarkable relation between the dlt dual affine geometry of statistical manifolds and the geometry of the dual pair of Banach spaces Ld and Ldd. It therefore offers conceptual simplification to information geometry. The general conclusion on the issue of evaluating neural network learning rules and other statistical inference methods is that such evaluations are only meaningful under three assumptions: The prior P(p), describing the environment of all the problems; the divergence Dd, specifying the requirement of the task; and the model Q, specifying available computing resources.
Resumo:
The kinematic mapping of a rigid open-link manipulator is a homomorphism between Lie groups. The homomorphisrn has solution groups that act on an inverse kinematic solution element. A canonical representation of solution group operators that act on a solution element of three and seven degree-of-freedom (do!) dextrous manipulators is determined by geometric analysis. Seven canonical solution groups are determined for the seven do! Robotics Research K-1207 and Hollerbach arms. The solution element of a dextrous manipulator is a collection of trivial fibre bundles with solution fibres homotopic to the Torus. If fibre solutions are parameterised by a scalar, a direct inverse funct.ion that maps the scalar and Cartesian base space coordinates to solution element fibre coordinates may be defined. A direct inverse pararneterisation of a solution element may be approximated by a local linear map generated by an inverse augmented Jacobian correction of a linear interpolation. The action of canonical solution group operators on a local linear approximation of the solution element of inverse kinematics of dextrous manipulators generates cyclical solutions. The solution representation is proposed as a model of inverse kinematic transformations in primate nervous systems. Simultaneous calibration of a composition of stereo-camera and manipulator kinematic models is under-determined by equi-output parameter groups in the composition of stereo-camera and Denavit Hartenberg (DH) rnodels. An error measure for simultaneous calibration of a composition of models is derived and parameter subsets with no equi-output groups are determined by numerical experiments to simultaneously calibrate the composition of homogeneous or pan-tilt stereo-camera with DH models. For acceleration of exact Newton second-order re-calibration of DH parameters after a sequential calibration of stereo-camera and DH parameters, an optimal numerical evaluation of DH matrix first order and second order error derivatives with respect to a re-calibration error function is derived, implemented and tested. A distributed object environment for point and click image-based tele-command of manipulators and stereo-cameras is specified and implemented that supports rapid prototyping of numerical experiments in distributed system control. The environment is validated by a hierarchical k-fold cross validated calibration to Cartesian space of a radial basis function regression correction of an affine stereo model. Basic design and performance requirements are defined for scalable virtual micro-kernels that broker inter-Java-virtual-machine remote method invocations between components of secure manageable fault-tolerant open distributed agile Total Quality Managed ISO 9000+ conformant Just in Time manufacturing systems.
Resumo:
Control design for stochastic uncertain nonlinear systems is traditionally based on minimizing the expected value of a suitably chosen loss function. Moreover, most control methods usually assume the certainty equivalence principle to simplify the problem and make it computationally tractable. We offer an improved probabilistic framework which is not constrained by these previous assumptions, and provides a more natural framework for incorporating and dealing with uncertainty. The focus of this paper is on developing this framework to obtain an optimal control law strategy using a fully probabilistic approach for information extraction from process data, which does not require detailed knowledge of system dynamics. Moreover, the proposed control method framework allows handling the problem of input-dependent noise. A basic paradigm is proposed and the resulting algorithm is discussed. The proposed probabilistic control method is for the general nonlinear class of discrete-time systems. It is demonstrated theoretically on the affine class. A nonlinear simulation example is also provided to validate theoretical development.
Resumo:
A scalable synthetic muscle has been constructed that transducts nanoscale molecular shape changes into macroscopic motion. The working material, which deforms affinely in response to a pH stimulus, is a self-assembled block copolymer comprising nanoscopic hydrophobic domains in a weak polyacid matrix. A device has been assembled where the muscle does work on a cantilever and the force generated has been measured. When coupled to a chemical oscillator this provides a free running chemical motor that generates a peak power of 20 mW kg 1 by the serial addition of 10 nm shape changes that scales over 5 orders of magnitude. It is the nanostructured nature of the gel that gives rise to the affine deformation and results in a robust working material for the construction of scalable muscle devices.
Resumo:
A study was conducted to create a pH-responsive layer, in which a small change in the individual polyacid or polybase gel length was transferred into a larger motion that curls up the gel. It was observed that the transfer of motion from a linear displacement into a curved displacement through the geometric design effectively increases the displacement rate. A robust, reversible, and chemically driven mechanical actuator was was produced that demonstrated its response over many pH oscillations. The affine nature of the triblock copolymers, demonstrated for for the polyacid and polybase indicated that the effect will also function at some smaller length scales, which is appropriate for a working biomimetic and soft nanotechnology device. The study also demonstrated the potential applicability of these polymeric gels and suggested the fabrication of related molecular machines and devices based on the principles of soft nanotechnology.
Resumo:
A pH-responsive ABA triblock copolymer, comprising poly(methyl methacrylate)-b/ock-poly(2-(diethylamino)ethyl methacrylate)-block-poly(methyl methacrylate) [PMMA-b-PDEA-b-PMMA], has been cast Into thin films with a well-defined microstructure. Small Angle X-ray Scattering (SAXS) and Atomic Force Microscopy (AFM) studies confirm that this copolymer forms a hydrogel consisting of PMMA spheres embedded within a polybase PDEA matrix, with the PMMA domains acting as physical cross-links. The hydrogel has a pH-reversible coil-globule transition at around pH 4.5. This responsive physical property was exploited by immersing a sample of copolymer hydrogel in an aqueous solution containing a cyclic pH-oscillating reaction, whereby the pH was continuously oscillated above and below the transition pH so as to induce autonomous volume transitions. The changes in microscopic and macroscopic length scales correlate closely during (de)swelling cycles, with affine behaviour occurring over five orders of magnitude. Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA,.
Resumo:
A probabilistic indirect adaptive controller is proposed for the general nonlinear multivariate class of discrete time system. The proposed probabilistic framework incorporates input–dependent noise prediction parameters in the derivation of the optimal control law. Moreover, because noise can be nonstationary in practice, the proposed adaptive control algorithm provides an elegant method for estimating and tracking the noise. For illustration purposes, the developed method is applied to the affine class of nonlinear multivariate discrete time systems and the desired result is obtained: the optimal control law is determined by solving a cubic equation and the distribution of the tracking error is shown to be Gaussian with zero mean. The efficiency of the proposed scheme is demonstrated numerically through the simulation of an affine nonlinear system.
Resumo:
We consider point sets in (Z^2,n) where no three points are on a line – also called caps or arcs. For the determination of caps with maximum cardinality and complete caps with minimum cardinality we provide integer linear programming formulations and identify some values for small n.
Resumo:
The problem of efficient computing of the affine vector operations (addition of two vectors and multiplication of a vector by a scalar over GF (q)), and also the weight of a given vector, is important for many problems in coding theory, cryptography, VLSI technology etc. In this paper we propose a new way of representing vectors over GF (3) and GF (4) and we describe an efficient performance of these affine operations. Computing weights of binary vectors is also discussed.
Resumo:
∗ Supported by Research grants GAUK 190/96 and GAUK 1/1998
Resumo:
Given a differentiable action of a compact Lie group G on a compact smooth manifold V , there exists [3] a closed embedding of V into a finite-dimensional real vector space E so that the action of G on V may be extended to a differentiable linear action (a linear representation) of G on E. We prove an analogous equivariant embedding theorem for compact differentiable spaces (∞-standard in the sense of [6, 7, 8]).
Resumo:
It is shown that the invertible polynomial maps over a finite field Fq , if looked at as bijections Fn,q −→ Fn,q , give all possible bijections in the case q = 2, or q = p^r where p > 2. In the case q = 2^r where r > 1 it is shown that the tame subgroup of the invertible polynomial maps gives only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fn,q can be a zero set of a coordinate if and only if #S = q^(n−1).
Resumo:
The theorem of Czerniakiewicz and Makar-Limanov, that all the automorphisms of a free algebra of rank two are tame is proved here by showing that the group of these automorphisms is the free product of two groups (amalgamating their intersection), the group of all affine automorphisms and the group of all triangular automorphisms. The method consists in finding a bipolar structure. As a consequence every finite subgroup of automorphisms (in characteristic zero) is shown to be conjugate to a group of linear automorphisms.
Resumo:
The Fermat equation is solved in integral two by two matrices of determinant one as well as in finite order integral three by three matrices.
Resumo:
Special generalizing for the artificial neural nets: so called RFT – FN – is under discussion in the report. Such refinement touch upon the constituent elements for the conception of artificial neural network, namely, the choice of main primary functional elements in the net, the way to connect them(topology) and the structure of the net as a whole. As to the last, the structure of the functional net proposed is determined dynamically just in the constructing the net by itself by the special recurrent procedure. The number of newly joining primary functional elements, the topology of its connecting and tuning of the primary elements is the content of the each recurrent step. The procedure is terminated under fulfilling “natural” criteria relating residuals for example. The functional proposed can be used in solving the approximation problem for the functions, represented by its observations, for classifying and clustering, pattern recognition, etc. Recurrent procedure provide for the versatile optimizing possibilities: as on the each step of the procedure and wholly: by the choice of the newly joining elements, topology, by the affine transformations if input and intermediate coordinate as well as by its nonlinear coordinate wise transformations. All considerations are essentially based, constructively and evidently represented by the means of the Generalized Inverse.